Detecting SIM Box Fraud by Using Support Vector Machine and Artificial Neural Network

被引:0
|
作者
Sallehuddin, Roselina [1 ]
Ibrahim, Subariah [1 ]
Zain, Azlan Mohd [1 ]
Elmi, Abdikarim Hussein [1 ]
机构
[1] Univ Teknol Malaysia, Fac Comp, Utm Johor Bahru 81310, Johor, Malaysia
来源
JURNAL TEKNOLOGI | 2015年 / 74卷 / 01期
关键词
SIM box fraud; artificial neural network; support vector machine; classification; accuracy;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fraud in communication has been increasing dramatically due to the new modern technologies and the global superhighways of communication, resulting in loss of revenues and quality of service in telecommunication providers especially in Africa and Asia. One of the dominant types of fraud is SIM box bypass fraud whereby SIM cards are used to channel national and multinational calls away from mobile operators and deliver as local calls. Therefore it is important to find techniques that can detect this type of fraud efficiently. In this paper, two classification techniques, Artificial Neural Network (ANN) and Support Vector Machine (SVM) were developed to detect this type of fraud. The classification uses nine selected features of data extracted from Customer Database Record. The performance of ANN is compared with SVM to find which model gives the best performance. From the experiments, it is found that SVM model gives higher accuracy compared to ANN by giving the classification accuracy of 99.06% compared with ANN model, 98.71% accuracy. Besides, better accuracy performance, SVM also requires less computational time compared to ANN since it takes lesser amount of time in model building and training.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Spam Email Detection Using Deep Support Vector Machine, Support Vector Machine and Artificial Neural Network
    Roy, Sanjiban Sekhar
    Sinha, Abhishek
    Roy, Reetika
    Barna, Cornel
    Samui, Pijush
    SOFT COMPUTING APPLICATIONS, SOFA 2016, VOL 2, 2018, 634 : 162 - 174
  • [2] Automated plant identification using artificial neural network and support vector machine
    Jye, Kho Soon
    Manickam, Sugumaran
    Malek, Sorayya
    Mosleh, Mogeeb
    Dhillon, Sarinder Kaur
    FRONTIERS IN LIFE SCIENCE, 2017, 10 (01): : 98 - 107
  • [3] APPROXIMATING SWAT MODEL USING ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE
    Zhang, Xuesong
    Srinivasan, Raghavan
    Van Liew, Michael
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2009, 45 (02): : 460 - 474
  • [4] Crop Prediction Using Artificial Neural Network and Support Vector Machine
    Fegade, Tanuja K.
    Pawar, B. V.
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 2, 2020, 1016 : 311 - 324
  • [5] Diagnosis and Classifications of Bearing Faults Using Artificial Neural Network and Support Vector Machine
    Agrawal P.
    Jayaswal P.
    Agrawal, Pavan (Pavanmits2012@gmail.com), 1600, Springer (101): : 61 - 72
  • [6] Machine Learning Techniques for SIM Box Fraud Detection
    Kashir, Mhair
    Bashir, Sajid
    2019 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (COMTECH), 2019, : 4 - 8
  • [7] Approximating support vector machine with artificial neural network for fast prediction
    Kang, Seokho
    Cho, Sungzoon
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (10) : 4989 - 4995
  • [8] ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE IN FLOOD FORECASTING: A REVIEW
    Suliman, Azizah
    Nazri, Nursyazana
    Othman, Marini
    Malek, Marlinda Abdul
    Ku-Mahamud, Ku Ruhana
    COMPUTING & INFORMATICS, 4TH INTERNATIONAL CONFERENCE, 2013, 2013, : 327 - +
  • [9] AUTOMATIC CLASSIFYING METHOD FOR WEDGE TIGHTNESS BY SUPPORT VECTOR MACHINE AND ARTIFICIAL NEURAL NETWORK
    Poombansao, Thanachai
    Kongprawechnon, Waree
    Kittipiyakul, Somsak
    Theeraworn, Chonlada
    Charoenlarp, Muntita
    Chunsangnate, It
    SURANAREE JOURNAL OF SCIENCE AND TECHNOLOGY, 2015, 22 (01): : 5 - 14
  • [10] Cancer Detection Using Aritifical Neural Network and Support Vector Machine: A Comparative Study
    Ubaidillah, Sharifah Hafizah Sy Ahmad
    Sallehuddin, Roselina
    Ali, Nor Azizah
    JURNAL TEKNOLOGI, 2013, 65 (01):