Localized Waves in Optical Systems with Periodic Dispersion and Nonlinearity Management

被引:3
作者
Bale, Brandon G. [1 ]
Boscolo, Sonia [1 ]
Schwartz, Osip Y. [2 ]
Turitsyn, Sergei K. [1 ]
机构
[1] Aston Univ, Sch Engn, Photon Res Grp, Birmingham B4 7ET, W Midlands, England
[2] Weizmann Inst Sci, IL-76100 Rehovot, Israel
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1155/2009/181467
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We overview our recent developments in the theory of dispersion-managed (DM) solitons within the context of optical applications. First, we present a class of localized solutions with a period multiple to that of the standard DM soliton in the nonlinear Schrodinger equation with periodic variations of the dispersion. In the framework of a reduced ordinary differential equation-based model, we discuss the key features of these structures, such as a smaller energy compared to traditional DM solitons with the same temporal width. Next, we present new results on dissipative DMs olitons, which occur in the context of mode-locked lasers. By means of numerical simulations and a reduced variational model of the complex Ginzburg-Landau equation, we analyze the influence of the different dissipative processes that take place in a laser. Copyright (C) 2009 Brandon G. Bale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:13
相关论文
共 73 条
[1]   Multiscale pulse dynamics in communication systems with strong dispersion management [J].
Ablowitz, MJ ;
Biondini, G .
OPTICS LETTERS, 1998, 23 (21) :1668-1670
[2]   Roadmap to ultra-short record high-energy pulses out of laser oscillators [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Grelu, Ph. .
PHYSICS LETTERS A, 2008, 372 (17) :3124-3128
[3]   Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach [J].
Akhmediev, N ;
Soto-Crespo, JM ;
Town, G .
PHYSICAL REVIEW E, 2001, 63 (05) :566021-566021
[4]  
Akhmediev N., 1997, SOLITONS NONLINEAR P
[5]  
Akhmediev N., 2005, LECT NOTES PHYS, V661
[6]   A variational approach to nonlinear evolution equations in optics [J].
Anderson, D ;
Lisak, M ;
Berntson, A .
PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6) :917-936
[7]   Dissipative solitons and antisolitons [J].
Ankiewicz, A. ;
Devine, N. ;
Akhmediev, N. ;
Soto-Crespo, J. M. .
PHYSICS LETTERS A, 2007, 370 (5-6) :454-458
[8]   Intracavity pulse dynamics and stability for passively mode-locked lasers [J].
Antonelli, Cristian ;
Chen, Jeff ;
Kartner, Franz X. .
OPTICS EXPRESS, 2007, 15 (10) :5919-5924
[9]   The world of the complex Ginzburg-Landau equation [J].
Aranson, IS ;
Kramer, L .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :99-143
[10]   Variational method for mode-locked lasers [J].
Bale, Brandon G. ;
Kutz, J. Nathan .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (07) :1193-1202