ON THE GENUS OF THE COMMUTING GRAPHS OF FINITE NON-ABELIAN GROUPS

被引:0
作者
Das, Ashish Kumar [1 ]
Nongsiang, Deiborlang [1 ]
机构
[1] North Eastern Hill Univ, Dept Math, Permanent Campus, Shillong 793022, Meghalaya, India
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2016年 / 19卷
关键词
Commuting graph; finite group; AC-group; genus of the commuting graphs;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The commuting graph of a non-abelian group is a simple graph in which the vertices are the non-central elements of the group, and two distinct vertices are adjacent if and only if they commute. In this paper, we determine (up to isomorphism) all finite non-abelian groups whose commuting graphs are acyclic, planar or toroidal. We also derive explicit formulas for the genus of the commuting graphs of some well-known class of finite non-abelian groups, and show that, every collection of isomorphism classes of finite non-abelian groups whose commuting graphs have the same genus is finite.
引用
收藏
页码:91 / 109
页数:19
相关论文
共 30 条
[1]   Non-commuting graph of a group [J].
Abdollahi, A ;
Akbari, S ;
Maimani, HR .
JOURNAL OF ALGEBRA, 2006, 298 (02) :468-492
[2]   On the diameters of commuting graphs [J].
Akbari, S. ;
Mohammadian, A. ;
Radjavi, H. ;
Raja, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 418 (01) :161-176
[3]   On commuting graphs of semisimple rings [J].
Akbari, S ;
Ghandehari, A ;
Hadian, M ;
Mohammadian, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 390 :345-355
[4]  
Bates C, 2009, ELECTRON J COMB, V16
[5]   ADDITIVITY OF GENUS OF A GRAPH [J].
BATTLE, J ;
HARARY, F ;
KODAMA, Y ;
YOUNGS, JWT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1962, 68 (06) :565-&
[6]  
Berkovich Y., 2008, DEGRUYTER EXPOSITION, V1
[7]   ON GROUPS OF EVEN ORDER [J].
BRAUER, R ;
FOWLER, KA .
ANNALS OF MATHEMATICS, 1955, 62 (03) :565-583
[8]  
Bupnside W, 1913, P LOND MATH SOC, V11, P225
[9]   NONPLANARITY OF UNIT GRAPHS AND CLASSIFICATION OF THE TOROIDAL ONES [J].
Das, A. K. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Yassemi, S. .
PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) :371-387
[10]   Finite groups with graphs containing no triangles [J].
Fang, M ;
Zhang, P .
JOURNAL OF ALGEBRA, 2003, 264 (02) :613-619