BERTRAND POSTULATE FOR PRIMES IN ARITHMETICAL PROGRESSIONS

被引:9
作者
MOREE, P
机构
[1] Mathematical Institute, Leiden University, 2300 RA Leiden
关键词
ARITHMETICAL PROGRESSION; PRIME; INTERVAL;
D O I
10.1016/0898-1221(93)90071-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Bertrand's Postulate is the theorem that the interval (x, 2x) contains at least one prime for x > 1. We prove, building on work of Erdos, analogues of this result, in which the interval is of the form (x, zx) and there are at least m primes = a(mod d) required to be contained in this interval, and where z, a and d have to satisfy some conditions. For the case m = 1 the results are worked out using a computer. They can be found in Table 1.
引用
收藏
页码:35 / 43
页数:9
相关论文
共 23 条
[1]   THE DISCRIMINATOR - A SIMPLE APPLICATION OF BERTRAND POSTULATE [J].
ARNOLD, LK ;
BENKOSKI, SJ ;
MCCABE, BJ .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (04) :275-277
[2]   BRAIDS AND PERMUTATIONS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (03) :643-649
[4]  
Coleman R., 1987, ENSEIGN MATH, V33, P183
[5]  
DIRICHLET PGL, 1837, WERKE, V1, P315
[6]   On the prime numbers in certain arithmetic series [J].
Erdos, P .
MATHEMATISCHE ZEITSCHRIFT, 1935, 39 :473-491
[7]  
ERODS P, 1930, ACTA LITT AC SCI REG, V5, P194
[8]  
MCCURLEY KS, 1984, MATH COMPUT, V42, P265, DOI 10.1090/S0025-5718-1984-0726004-6
[9]   EXPLICIT ESTIMATES FOR THETA(X,3,L) AND PHI(X,3,L) [J].
MCCURLEY, KS .
MATHEMATICS OF COMPUTATION, 1984, 42 (165) :287-296
[10]  
MOLSEN K, 1941, DTSCH MATH, V6, P248