EXISTENCE RESULT FOR HEMIVARIATIONAL INEQUALITY INVOLVING p(x)-LAPLACIAN

被引:5
作者
Barnas, Sylwia [1 ,2 ]
机构
[1] Cracow Univ Technol, Inst Math, Ul Warszawska 24, PL-31155 Krakow, Poland
[2] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, PL-30348 Krakow, Poland
关键词
p(x)-Laplacian; Palais-Smale condition; mountain pass theorem; variable exponent Sobolev space;
D O I
10.7494/OpMath.2012.32.3.439
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the nonlinear elliptic problem with p(x)-Laplacian (hemivariational inequality). We prove the existence of a nontrivial solution. Our approach is based on critical point theory for locally Lipschitz functionals due to Chang [J. Math. Anal. Appl. 80 (1981), 102-129].
引用
收藏
页码:439 / 454
页数:16
相关论文
共 22 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1996, CRITICAL POINT THEOR
[3]   VARIATIONAL-METHODS FOR NON-DIFFERENTIABLE FUNCTIONALS AND THEIR APPLICATIONS TO PARTIAL-DIFFERENTIAL EQUATIONS [J].
CHANG, KC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 80 (01) :102-129
[4]  
Clarke F., 1993, OPTIMIZATION NONSMOO
[5]   Infinitely many solutions for a hemivariational inequality involving the p(x)-Laplacian [J].
Dai, Guowei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :186-195
[6]  
Fan X., 1998, J GANSU ED COLL, V12, P1
[7]   Eigenvalues of the p(x)-Laplacian Neumann problems [J].
Fan, Xianling .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) :2982-2992
[8]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[9]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[10]   Solutions for p(x)-Laplacian Dirichlet problems with singular coefficients [J].
Fan, XL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 312 (02) :464-477