ASYMMETRIC IMPURITY MODES IN NONLINEAR LATTICES

被引:11
作者
KOVALEV, AS
ZHANG, F
KIVSHAR, YS
机构
[1] AUSTRALIAN NATL UNIV,RES SCH CHEM,CANBERRA,ACT 0200,AUSTRALIA
[2] AUSTRALIAN NATL UNIV,CTR OPT SCI,CANBERRA,ACT 0200,AUSTRALIA
来源
PHYSICAL REVIEW B | 1995年 / 51卷 / 05期
关键词
D O I
10.1103/PhysRevB.51.3218
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze spatially localized large-amplitude oscillations in the vicinity of an isotopic impurity. We show that, in addition to a symmetric nonlinear impurity mode found earlier [see, e.g., Yu. S. Kivshar, Phys. Lett. A 161, 80 (1991)], there exists an asymmetric impurity mode which appears as a result of a bifurcation from the symmetric mode. The structure of this asymmetric impurity mode is calculated analytically in the three-particle approximation and its stability is demonstrated by direct numerical simulations. © 1995 The American Physical Society.
引用
收藏
页码:3218 / 3221
页数:4
相关论文
共 14 条
[1]   NUMERICAL MEASUREMENTS OF THE SHAPE AND DISPERSION-RELATION FOR MOVING ONE-DIMENSIONAL ANHARMONIC LOCALIZED MODES [J].
BICKHAM, SR ;
SIEVERS, AJ ;
TAKENO, S .
PHYSICAL REVIEW B, 1992, 45 (18) :10344-10347
[2]   COMPUTER-SIMULATION OF INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL AND 2-DIMENSIONAL ANHARMONIC LATTICES [J].
BURLAKOV, VM ;
KISELEV, SA ;
PYRKOV, VN .
PHYSICAL REVIEW B, 1990, 42 (08) :4921-4927
[3]   STABILITY OF INTRINSIC LOCALIZED MODES IN ANHARMONIC 1-D LATTICES [J].
CHUBYKALO, OA ;
KOVALEV, AS ;
USATENKO, OV .
PHYSICS LETTERS A, 1993, 178 (1-2) :129-137
[4]  
CLAUDE C, 1992, PHYS REV B, V47, P14228
[5]  
KISELEV SA, 1994, PHYS LETT A, V184, P225
[6]   NONLINEAR LOCALIZED MODES IN INHOMOGENEOUS CHAINS [J].
KIVSHAR, YS .
PHYSICS LETTERS A, 1991, 161 (01) :80-84
[7]   PEIERLS-NABARRO POTENTIAL BARRIER FOR HIGHLY LOCALIZED NONLINEAR MODES [J].
KIVSHAR, YS ;
CAMPBELL, DK .
PHYSICAL REVIEW E, 1993, 48 (04) :3077-3081
[8]   LOCALIZED MODES IN A CHAIN WITH NONLINEAR ON-SITE POTENTIAL [J].
KIVSHAR, YS .
PHYSICS LETTERS A, 1993, 173 (02) :172-178
[9]  
KOSEVICH AM, 1975, SOV J LOW TEMP PHYS, V1, P742
[10]  
KOSEVICH AM, 1974, ZH EKSP TEOR FIZ, V40, P891