Estimation of optimal portfolio compositions for Gaussian returns

被引:24
作者
Bodnar, Taras [1 ]
Schmid, Wolfgang [1 ]
机构
[1] European Univ Viadrina, Dept Stat, POB 1786, D-15207 Frankfurt, Oder, Germany
关键词
Asset allocation; portfolio analysis; mean-variance portfolio; parameter uncertainty; portfolio characteristics;
D O I
10.1524/stnd.2008.0918
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the expected return and the variance of the expected quadratic utility portfolio and the tangency portfolio. The expected returns on the individual assets and their covariance matrix are estimated by the sample mean and the sample covariance matrix. Replacing the unknown parameters by these estimators in the portfolio characteristics estimators of the expected portfolio return and the portfolio variance are obtained. In this paper we calculate the densities of these estimators assuming independent and multivariate normally distributed returns. Because the densities can be computed by using standard mathematical software packages these representations are very useful. These results can be applied to construct tests and confidence intervals for the parameters of the efficient frontier.
引用
收藏
页码:179 / 201
页数:23
相关论文
共 31 条
[1]  
Andrews G.E., 2000, SPECIAL FUNCTIONS
[2]  
Bodnar O., 2008, INT J FINAN IN PRESS
[3]  
Bodnar T., 2006, EUV WORKING PAPER SE, V5
[4]  
Bodnar T., 2008, EUROPEAN J IN PRESS
[5]  
Bodnar T., 2004, THESIS
[6]   A test for the weights of the global minimum variance portfolio in an elliptical model [J].
Bodnar, Taras ;
Schmid, Wolfgang .
METRIKA, 2008, 67 (02) :127-143
[7]   The sampling error in estimates of mean-variance efficient portfolio weights [J].
Britten-Jones, M .
JOURNAL OF FINANCE, 1999, 54 (02) :655-671
[8]  
Cochrane J. H., 1999, 7170 NBER
[9]  
Fama EF., 1976, FDN FINANCE
[10]  
Fang K.-T., 1990, GEN MULTIVARIATE ANA