ASYMPTOTICS OF THE DISCRETE SPECTRUM FOR COMPLEX JACOBI MATRICES

被引:4
作者
Malejki, Maria [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
关键词
tridiagonal matrix; complex Jacobi matrix; discrete spectrum; eigenvalue; asymptotic formula; unbounded operator; Riesz projection;
D O I
10.7494/OpMath.2014.34.1.139
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectral properties and the asymptotic behaviour of the discrete spectrum for a special class of infinite tridiagonal matrices are given. We derive the asymptotic formulae for eigenvalues of unbounded complex Jacobi matrices acting in l(2) (N).
引用
收藏
页码:139 / 160
页数:22
相关论文
共 24 条
[1]   The diagonal of the Pade table and the approximation of the Weyl function of second-order difference operators [J].
Beckermann, B ;
Kaliaguine, V .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (04) :481-510
[2]  
Berezansky YM, 2008, METHODS FUNCT ANAL T, V14, P108
[3]  
Cojuhari PA, 2007, ACTA SCI MATH, V73, P649
[4]  
de Monvel A.B., 2012, OPERATOR THEORY ADV, V221, P189, DOI DOI 10.1007/978-3-0348-0297-0_11
[5]  
de Monvel AB, 2006, ASYMPTOTIC ANAL, V47, P291
[6]   Trace formula and Spectral Riemann Surfaces for a class of tri-diagonal matrices [J].
Djakov, P ;
Mityagin, B .
JOURNAL OF APPROXIMATION THEORY, 2006, 139 (1-2) :293-326
[7]   Simple and double eigenvalues of the Hill operator with a two-term potential [J].
Djakov, P ;
Mityagin, B .
JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) :70-104
[9]   Discrete spectrum for complex perturbations of periodic Jacobi matrices [J].
Egorova, I ;
Golinskii, L .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (14) :1185-1203
[10]   On the location of the discrete spectrum for complex Jacobi matrices [J].
Egorova, I ;
Golinskii, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3635-3641