DUALITY AND MINORS OF SECONDARY POLYHEDRA

被引:38
作者
BILLERA, LJ
GELFAND, IM
STURMFELS, B
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,MOSCOW 119899,RUSSIA
[2] RUTGERS STATE UNIV,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1006/jctb.1993.1020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Minkowski integration, we define the secondary polyhedron of a vector configuration A and study its behavior under the matroidal operations of duality, deletion, and contraction. A main tool is the identification of the regular polyhedral subdivisions of A with the cells in the dual chamber complex. As an application we construct a non-regular triangulation of a cyclic polytope. © 1993 by Academic Press, Inc.
引用
收藏
页码:258 / 268
页数:11
相关论文
共 12 条
[1]  
ALEKSEYEVSKAYA TV, 1988, SOV MATH DOKL, V36, P589
[2]   CONSTRUCTIONS AND COMPLEXITY OF SECONDARY POLYTOPES [J].
BILLERA, LJ ;
FILLIMAN, P ;
STURMFELS, B .
ADVANCES IN MATHEMATICS, 1990, 83 (02) :155-179
[3]   FIBER POLYTOPES [J].
BILLERA, LJ ;
STURMFELS, B .
ANNALS OF MATHEMATICS, 1992, 135 (03) :527-549
[4]  
Bjorner A., 1993, ORIENTED MATROIDS
[5]  
Gel'fand I.M., 1990, ALGEBR ANAL, V2, P1
[6]  
GELFAND IM, 1989, DOKL AKAD NAUK SSSR+, V308, P20
[7]  
Grunbaum B., 2003, CONVEX POLYTOPES, V2nd
[8]  
Kapranov M. M., 1989, CAH TOP GEOM DIF, V32, P11
[9]  
MCMULLEN P, 1979, CONTRIBUTIONS GEOMET
[10]   LINEAR GALE TRANSFORMS AND GELFAND-KAPRANOV-ZELEVINSKIJ DECOMPOSITIONS [J].
ODA, T ;
PARK, HS .
TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (03) :375-399