A CONTINUATION APPROACH TO SUPERLINEAR PERIODIC BOUNDARY-VALUE-PROBLEMS

被引:67
作者
CAPIETTO, A
MAWHIN, J
ZANOLIN, F
机构
[1] CATHOLIC UNIV LOUVAIN,INST MATH,CHEMIN CYCLOTRON 2,B-1348 LOUVAIN LA NEUVE,BELGIUM
[2] DEPT MATH & COMP SCI,I-33100 UDINE,ITALY
关键词
D O I
10.1016/0022-0396(90)90102-U
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:347 / 395
页数:49
相关论文
共 48 条
[1]  
Bahri, Berestycki, Forced vibrations of superquadratic Hamiltonian systems, Acta Math., 152, pp. 143-197, (1984)
[2]  
Bahri, Berestycki, Existence of forced oscillations for some nonlinear differential equations, Communications on Pure and Applied Mathematics, 37, pp. 403-442, (1984)
[3]  
Bailey, Shampine, Waltman, Nonlinear Two Point Boundary Value Problems, (1968)
[4]  
Bernfeld, Lakshmikanthan, An Introduction to Nonlinear Boundary Value Problems, (1974)
[5]  
Castro, Lazer, On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital. B (5), 18, pp. 733-742, (1981)
[6]  
Cesari, Functional Analysis and periodic solutions of nonlinear differential equations, Contrib. Diff. Eq., 1, pp. 149-187, (1963)
[7]  
Clark, Periodic solutions systems of ordinary differential equations, J. Differential Equations, 28, pp. 354-368, (1978)
[8]  
Ding, An infinite class of periodic solutions of periodically perturbed Duffing equations at resonance, Proceedings of the American Mathematical Society, 86, pp. 47-54, (1982)
[9]  
Ding, Fixed points of twist mappings and periodic solutions of ordinary differential equations, Acta Math. Sinica, 25, pp. 227-235, (1982)
[10]  
Ekeland, Oscillations de systèmes hamiltoniens non linéaires, III, Bull. Soc. Math. France, 109, pp. 297-330, (1981)