Intelligent identification and classification of epileptic seizures using wavelet transform

被引:6
|
作者
Najumnissa, D. [1 ]
ShenbagaDevi, S. [2 ]
机构
[1] BSA Crescent Engn Coll, Dept Instrumentat & Control Engn, Madras, Tamil Nadu, India
[2] Anna Univ, Dept Elect & Commun Engn, Ctr Med Elect, Coll Engn, Madras, Tamil Nadu, India
关键词
Artificial Neural Network; ANN; Daubechies; EEG; seizures; wavelet transform;
D O I
10.1504/IJBET.2008.016963
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Epilepsy is a common neurological disorder. The need of the hour is an automated analysis of the Electroencephalographs (EEGs), which enhances efficiency of diagnosis. This paper presents simple and new approach for classifying the types of epileptic seizures. A set of feed forward neural network with wavelet feature extraction are used to process time, frequency to detect and classify the type of seizure like absence, Tonic-clonic, Febrile and Complex partial seizures. Tests of the system on EEG indicate a success rate of 94.3%. This method makes it possible as a real-time detector, which will improve the clinical service of Electroencephalographic recording.
引用
收藏
页码:293 / 314
页数:22
相关论文
共 50 条
  • [21] Selecting Statistical Characteristics of Brain Signals to Detect Epileptic Seizures using Discrete Wavelet Transform and Perceptron Neural Network
    Abbasi, Rezvan
    Esmaeilpour, Mansour
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2017, 4 (05): : 33 - 38
  • [22] Wavelet Transform-based Feature Extraction Approach for Epileptic Seizure Classification
    Rabby, Md Khurram Monir
    Islam, A. K. M. Kamrul
    Belkasim, Saeid
    Bikdash, Marwan U.
    ACMSE 2021: PROCEEDINGS OF THE 2021 ACM SOUTHEAST CONFERENCE, 2021, : 164 - 169
  • [23] Analysis of EEG records in an epileptic patient using wavelet transform
    Adeli, H
    Zhou, Z
    Dadmehr, N
    JOURNAL OF NEUROSCIENCE METHODS, 2003, 123 (01) : 69 - 87
  • [24] Epileptic seizures identification with autoregressive model and firefly optimization based classification
    Attia, Abdelouahab
    Moussaoui, Abdelouahab
    Chahir, Youssef
    EVOLVING SYSTEMS, 2021, 12 (03) : 827 - 836
  • [25] A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension
    Sharma, Manish
    Pachori, Ram Bilas
    Acharya, U. Rajendra
    PATTERN RECOGNITION LETTERS, 2017, 94 : 172 - 179
  • [26] Classification of heart sounds by using wavelet transform
    Say, Ö
    Dokur, Z
    Ölmez, T
    SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, : 128 - 129
  • [27] Classification of EEG signals using the wavelet transform
    Hazarika, N
    Chen, JZ
    Tsoi, AC
    Sergejew, A
    SIGNAL PROCESSING, 1997, 59 (01) : 61 - 72
  • [28] Classification by using wavelet transform on multispectral images
    Wang Hai-Hui
    Cai Ai-Ping
    GEOINFORMATICS 2006: REMOTELY SENSED DATA AND INFORMATION, 2006, 6419
  • [29] Supervised texture classification using wavelet transform
    Talbar, SN
    Holambe, RS
    Sontakke, TR
    ICSP '98: 1998 FOURTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, PROCEEDINGS, VOLS I AND II, 1998, : 1177 - 1180
  • [30] Principle components analysis for seizures prediction using wavelet transform
    Usman, Syed Muhammad
    Latif, Shahzad
    Beg, Arshad
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2019, 6 (03): : 50 - 55