TWISTED MONOMIAL GAUSS SUMS MODULO PRIME POWERS

被引:2
作者
Pigno, Vincent [1 ]
Pinner, Christopher [2 ]
机构
[1] Calif State Univ Sacramento, Dept Math & Stat, Sacramento, CA 95819 USA
[2] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
exponential sums; Gauss sums;
D O I
10.7169/facm/2014.51.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that twisted monomial Gauss sums modulo prime powers can be evaluated explicitly once the power is sufficiently large.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 18 条
[1]  
Apostol TM., 1976, INTRO ANAL NUMBER TH, DOI [DOI 10.1007/978-1-4757-5579-4, 10.1007/978-1-4757-5579-4]
[2]  
Berndt B.C., 1998, SERIES MONOGRAPHS AD, V21
[3]  
Cochrane T, 2002, NUMBER THEORY FOR THE MILLENNIUM I, P273
[4]  
Cochrane T, 1999, ACTA ARITH, V91, P249
[5]  
Cochrane T., 2000, ASIAN J MATH, V4, P757
[6]  
Guo X., HACET J MAT IN PRESS
[7]   ON THE 2k-TH POWER MEAN VALUE OF THE GENERALIZED QUADRATIC GAUSS SUMS [J].
He, Yanfeng ;
Zhang, Wenpeng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (01) :9-15
[8]   New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum [J].
Heath-Brown, DR ;
Konyagin, S .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :221-235
[9]  
HeathBrown DR, 1996, PROG MATH, V139, P451
[10]   AN IDENTITY ON THE 2m-TH POWER MEAN VALUE OF THE GENERALIZED GAUSS SUMS [J].
Liu, Feng ;
Yang, Quan-Hui .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) :1327-1334