AN ANALYSIS OF SCATTEROMETER RETURNS FROM A WATER-SURFACE AGITATED BY ARTIFICIAL RAIN - EVIDENCE THAT RING-WAVES ARE THE MAIN FEATURE

被引:44
作者
BLIVEN, LF
BRANGER, H
SOBIESKI, P
GIOVANANGELI, JP
机构
[1] INST MECAN STAT TURBULENCE,F-13003 MARSEILLE,FRANCE
[2] UNIV CATHOLIQUE LOUVAIN,DEPT ELECT,B-1348 LOUVAIN,BELGIUM
关键词
D O I
10.1080/01431169308954039
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Both wind and rain roughen the sea surface, but whereas wind generates waves, rain generates craters, stalks and ring-waves. Average backscattered power for scatterometer returns from water surfaces is closely related to small scale features on the water surface, so we use backscattered power from short wind-waves as a basis to evaluate the importance of ring-waves. Experiments were conducted with a 13.5 GHz scatterometer (30-degrees incidence angle, vertical polarization) in a wind-wave tank that is enhanced by a rain simulator. Rain intensities ranged from 3-30 mm h-1 and wind friction velocities were between 10 and 50 cm s-1. The variance of sur-face elevation for small scale features xi(sm)2, i.e., ring-waves and short wind-waves, was computed for each case using data from a capacitance probe. Comparison of the data sets shows that the range of xi(sm)2 for the rain cases is comparable to that from light to moderate wind cases-so ring-wave amplitudes are not negligible. Analysis of the radar data provides evidence that ring-waves are the dominant feature contributing to the backscattered power. Thus ring-waves need to be included in scatterometer numerical models that contain rain effects.
引用
收藏
页码:2315 / 2329
页数:15
相关论文
共 49 条