On the creation of stable periodic behavior of parametrically excited dynamical systems

被引:0
|
作者
Deryugin, AN
Loskutov, AY
Tereshko, VM
机构
关键词
D O I
10.1007/BF02068747
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of the realization of stable periodic behavior of dynamical systems is considered. It is shown analytically that in certain cases it is possible to achieve by parametric perturbation stable periodic behavior of systems that in the autonomous case possess only unstable oscillatory or stationary regimes or are in a stable equilibrium position.
引用
收藏
页码:1162 / 1165
页数:4
相关论文
共 50 条
  • [21] Forecasting bifurcations in parametrically excited systems
    Chen, Shiyang
    Epureanu, Bogdan
    NONLINEAR DYNAMICS, 2018, 91 (01) : 443 - 457
  • [22] Two parametrically excited chain systems
    Tondl, Aleš
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 2002, 47 (01): : 67 - 74
  • [23] Forecasting bifurcations in parametrically excited systems
    Shiyang Chen
    Bogdan Epureanu
    Nonlinear Dynamics, 2018, 91 : 443 - 457
  • [24] STABILITY OF PARAMETRICALLY EXCITED DISSIPATIVE SYSTEMS
    LEIBER, T
    RISKEN, H
    PHYSICS LETTERS A, 1988, 129 (04) : 214 - 218
  • [25] Active control of parametrically excited systems
    Tehrani, M. Ghandchi
    Kalkowski, M. K.
    Elliott, S. J.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2014) AND INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2014), 2014, : 1237 - 1251
  • [26] The dynamic behavior of a parametrically excited time-periodic MEMS taking into account parametric errors
    Peruzzi, N. J.
    Chavarette, F. R.
    Balthazar, J. M.
    Tusset, A. M.
    Perticarrari, A. L. P. M.
    Brasil, R. M. F. L.
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (20) : 4101 - 4110
  • [27] DYNAMIC ANALYSIS OF PARAMETRICALLY EXCITED STABLE ROTORS WITH UNBALANCE
    De Felice, Alessandro
    Sorrentino, Silvio
    PROCEEDINGS OF ASME 2023 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2023, VOL 6, 2023,
  • [28] POSTBUCKLING BEHAVIOR OF A PARAMETRICALLY EXCITED NONLINEAR COLUMN
    GENIN, J
    WILHELMS.R
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1973, 24 (01) : 130 - 133
  • [29] Bifurcation mechanism of bursting oscillations in parametrically excited dynamical system
    Bi, Qinsheng
    Zhang, Ran
    Zhang, Zhengdi
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 243 : 482 - 491
  • [30] On the behavior of parametrically excited purely nonlinear oscillators
    Miodrag Zukovic
    Ivana Kovacic
    Nonlinear Dynamics, 2012, 70 : 2117 - 2128