Accelerating R with high performance linear algebra libraries

被引:0
|
作者
Oancea, Bogdan [1 ,2 ]
Andrei, Tudorel [2 ,3 ]
Dragoescu, Raluca Mariana [3 ]
机构
[1] Nicolae Titulescu Univ Bucharest, Bucharest, Romania
[2] Natl Stat Inst Romania, Bucharest, Romania
[3] Bucharest Univ Econ Studies, Bucharest, Romania
关键词
linear algebra; BLAS; high performance computing;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 50 条
  • [1] RcppArmadillo: Accelerating R with high-performance C plus plus linear algebra
    Eddelbuettel, Dirk
    Sanderson, Conrad
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 1054 - 1063
  • [2] Formal methods for high-performance linear algebra libraries
    Gunnels, JA
    van de Geijn, RA
    ARCHITECTURE OF SCIENTIFIC SOFTWARE, 2001, 60 : 193 - 210
  • [3] Performance estimation of linear algebra numerical libraries
    De Rosis, Alessandro
    JOURNAL OF NUMERICAL MATHEMATICS, 2015, 23 (01) : 13 - 19
  • [4] Accelerating GPU Kernels for Dense Linear Algebra
    Nath, Rajib
    Tomov, Stanimire
    Dongarra, Jack
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2010, 2011, 6449 : 83 - 92
  • [5] The Linear Algebra Mapping Problem. Current State of Linear Algebra Languages and Libraries
    Psarras, Christos
    Barthels, Henrik
    Bientinesi, Paolo
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (03):
  • [6] Parallelizing dense and banded linear algebra libraries using SMPSs
    Badia, Rosa M.
    Herrero, Jose R.
    Labarta, Jesus
    Perez, Josep M.
    Quintana-Orti, Enrique S.
    Quintana-Orti, Gregorio
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2009, 21 (18): : 2438 - 2456
  • [7] GINKGO: A Modern Linear Operator Algebra Framework for High Performance Computing
    Anzt, Hartwig
    Cojean, Terry
    Flegar, Goran
    Gobel, Fritz
    Grutzmacher, Thomas
    Nayak, Pratik
    Ribizel, Tobias
    Tsai, Yuhsiang Mike
    Quintana-Orti, Enrique S.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2022, 48 (01):
  • [8] Accelerating spectral graph analysis through wavefronts of linear algebra operations
    Drocco, Maurizio
    Viviani, Paolo
    Colonnelli, Iacopo
    Aldinucci, Marco
    Grangetto, Marco
    2019 27TH EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 2019, : 9 - 16
  • [9] Accelerating Band Linear Algebra Operations on GPUs with Application in Model Reduction
    Benner, Peter
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Igounet, Pablo
    Quintana-Orti, Enrique S.
    Remon, Alfredo
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, PART VI - ICCSA 2014, 2014, 8584 : 386 - 400
  • [10] Evaluation of Open-Source Linear Algebra Libraries in Embedded Applications
    Fibich, Christian
    Tauner, Stefan
    Roessler, Peter
    Horauer, Martin
    Krapfenbauer, Markus
    Linauer, Martin
    Matschnig, Martin
    Taucher, Herbert
    2019 8TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2019, : 228 - 233