EXACT PENALTY-FUNCTIONS AND STABILITY IN LOCALLY LIPSCHITZ PROGRAMMING

被引:64
作者
ROSENBERG, E
机构
关键词
D O I
10.1007/BF02591938
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:340 / 356
页数:17
相关论文
共 23 条
[1]  
BAZARAA MS, 1982, MATH PROGRAM STUD, V19, P1, DOI 10.1007/BFb0120980
[2]   NECESSARY AND SUFFICIENT CONDITIONS FOR A PENALTY METHOD TO BE EXACT [J].
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1975, 9 (01) :87-99
[3]  
BERTSEKAS DP, 1980, 18TH P ALL C COMM CO, P584
[4]  
CHANEY RW, 1983, T AM MATH SOC, V276, P235
[5]   LOWER BOUND FOR CONTROLLING PARAMETERS OF EXACT PENALTY FUNCTIONS [J].
CHARALAMBOUS, C .
MATHEMATICAL PROGRAMMING, 1978, 15 (03) :278-290
[6]   NEW APPROACH TO LAGRANGE MULTIPLIERS. [J].
Clarke, Frank H. .
Mathematics of Operations Research, 1976, 1 (02) :165-174
[7]  
CLARKE F. H., 1983, OPTIMIZATION NONSMOO
[8]   PENALTY FUNCTION METHOD CONVERGING DIRECTLY TO A CONSTRAINED OPTIMUM [J].
CONN, AR ;
PIETRZYKOWSKI, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :348-375
[9]  
Evans J. P., 1973, MATHEMATIEAL PROGRAM, V4, P72
[10]  
Fletcher R., 1981, NONLINEAR PROGRAMMIN, V4, P99