DIFFUSION AND EINSTEIN RELATION FOR A MASSIVE PARTICLE IN A ONE-DIMENSIONAL FREE FAS - NUMERICAL EVIDENCE

被引:3
作者
BOLDRIGHINI, C
COSIMI, GC
FRIGIO, S
机构
[1] Dipartimento di Matematica e Fisica, Università degli Studi di Camerino, Camerino
关键词
Brownian limit; computer simulation; Einstein relation; tagged particle in free gas;
D O I
10.1007/BF01334749
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A computer simulation is used to investigate the motion of a marked particle of mass M in a free gas of particles with mass m=1, for large times. Previous results seem to indicate a non-Wiener behavior for the rescaled trajectory when M≠m. The results reported here, with better statistics, are compatible with the Wiener hypothesis. The Einstein relation between mobility and diffusion coefficient is also investigated. The results indicate that it holds both for M=m and for M≠m. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:1241 / 1250
页数:10
相关论文
共 10 条
[1]   ON CERTAIN LIMIT THEOREMS OF THE THEORY OF PROBABILITY [J].
ERDOS, P ;
KAC, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (04) :292-302
[2]  
FERRARI PA, 1985, STATISTICAL PHYSICS
[3]  
Harris T. E., 1965, J APPL PROBAB, V2, P323, DOI [10.2307/3212197, DOI 10.2307/3212197]
[4]  
KHAZIN ML, 1987, TEOR MAT FIZ, V71, P299
[5]  
KNUTH DE, 1981, ART COMPUTER PROGRAM, V2, P64
[6]   ON THE EFFECT OF COLLISIONS ON THE MOTION OF AN ATOM IN R1 [J].
MAJOR, P ;
SZASZ, D .
ANNALS OF PROBABILITY, 1980, 8 (06) :1068-1078
[7]   NUMERICAL EVIDENCE FOR MASS DEPENDENCE IN THE DIFFUSIVE BEHAVIOR OF THE HEAVY PARTICLE ON THE LINE [J].
OMERTI, E ;
RONCHETTI, M ;
DURR, D .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (3-4) :339-346
[8]  
SPITZER F, 1969, J MATH MECH, V18, P973
[9]   BOUNDS FOR THE LIMITING VARIANCE OF THE HEAVY PARTICLE IN R1 [J].
SZASZ, D ;
TOTH, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (03) :445-455
[10]  
YA G, 1986, COMMUN MATH PHYS, V104, P423