2 PRECONDITIONERS BASED ON THE MULTILEVEL SPLITTING OF FINITE-ELEMENT SPACES

被引:80
作者
YSERENTANT, H
机构
[1] Mathematisches Institut, Universität Tübingen, Tübingen
关键词
Subject classifications: AMS(MOS); 65F10; 65F35; 65N20; 65N30; CR:; G; 1.8;
D O I
10.1007/BF01385617
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The hierarchical basis preconditioner and the recent preconditioner of Bramble, Pasciak and Xu are derived and analyzed within a joint framework. This discussion elucidates the close relationship between both methods. Special care is devoted to highly nonuniform meshes; exclusively local properties like the shape regularity of the finite elements are utilized. © 1990 Springer-Verlag.
引用
收藏
页码:163 / 184
页数:22
相关论文
共 13 条
[1]  
Bank R.E., 1983, SCI COMPUT APPL MATH, P3
[2]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[3]  
Bank RE, 1990, PLTMG SOFTWARE PACKA
[4]  
BRAMBLE JH, IN PRESS MATH COMPUT
[5]   THE STABILITY IN LP AND W-P-1 OF THE L2-PROJECTION ONTO FINITE-ELEMENT FUNCTION-SPACES [J].
CROUZEIX, M ;
THOMEE, V .
MATHEMATICS OF COMPUTATION, 1987, 48 (178) :521-532
[6]  
Deuflhard P., 1989, Impact of Computing in Science and Engineering, V1, P3, DOI 10.1016/0899-8248(89)90018-9
[7]  
HACKBUSCH W, 1986, UNPUB THEORIE NUMERI
[8]  
Hackbusch W., 1985, SPRINGER SERIES COMP, V4
[9]  
ONG MEG, 1989, 893 U WASH DEP APPL
[10]  
OSWALD P, 1989, N8916 F SCHILL U TEC