INTEGRALS OF THE EMDEN-FOWLER EQUATIONS

被引:5
作者
RANGANATHAN, PV
机构
[1] Department of Mathematics, Ramakrishna Mission Vivekananda College, Madras
关键词
D O I
10.1016/0020-7462(92)90063-D
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Considering a generalized form of the Emden-Fowler equation and using a direct and simple method, we find sufficient conditions of integrability which enable us to obtain its first integrals as well as the solutions. As special cases, we discuss the integrals of the Emden-Fowler equation x + (k1/t)x = Kt(k2)x(n). Illustrative examples are given.
引用
收藏
页码:583 / 590
页数:8
相关论文
共 50 条
[21]   Nonoscillation theorems for Emden-Fowler system of differential equations [J].
Manojlovíc, J .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (07) :687-694
[22]   NONOSCILLATORY SOLUTIONS FOR EMDEN-FOWLER TYPE DIFFERENCE EQUATIONS [J].
Cecchi, M. ;
Dosla, Z. ;
Marini, M. ;
Vrkoc, I. .
DIFFERENCE EQUATIONS, SPECIAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS, 2007, :159-+
[23]   A NEW DYNAMICAL APPROACH OF EMDEN-FOWLER EQUATIONS AND SYSTEMS [J].
Bidaut-Veron, Marie Francoise ;
Gacomini, Hector .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2010, 15 (11-12) :1033-1082
[24]   SOLUTION OF GENERALIZED EMDEN-FOWLER EQUATIONS WITH 2 SYMMETRIES [J].
MELLIN, CM ;
MAHOMED, FM ;
LEACH, PGL .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1994, 29 (04) :529-538
[25]   EMDEN-FOWLER EQUATIONS WITH INFINITELY EXTENDIBLE UNBOUNDED SOLUTIONS [J].
IZOBOV, NA .
MATHEMATICAL NOTES, 1984, 35 (1-2) :99-105
[26]   OSCILLATION AND NONOSCILLATION OF SOLUTIONS OF GENERALIZED EMDEN-FOWLER EQUATIONS [J].
COFFMAN, CV ;
WONG, JSW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 167 (MAY) :399-&
[27]   On oscillation and nonoscillation properties of Emden-Fowler difference equations [J].
Cecchi, Mariella ;
Dosla, Zuzana ;
Marini, Mauro .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (02) :322-334
[28]   Quasi-Lie schemes and Emden-Fowler equations [J].
Carinena, Jose F. ;
Leach, P. G. L. ;
de Lucas, Javier .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[29]   QUALITATIVE STUDY OF SOLUTIONS FOR EMDEN-FOWLER DIFFERENTIAL EQUATIONS [J].
LEFRANC, M ;
MAWHIN, J .
BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1969, 55 (08) :763-&
[30]   Intermediate Asymptotics for Solutions to Equations of Emden-Fowler Type [J].
Stepin, S. A. ;
Shafarevich, A. I. .
DOKLADY MATHEMATICS, 2024, 110 (03) :469-473