NONLINEAR CORRECTIONS TO THE SCHRODINGER-EQUATION FROM GEOMETRIC QUANTUM-MECHANICS

被引:13
作者
CASTRO, C
机构
[1] Physics Department, Center for Particle Theory, University of Texas at Austin, Austin
关键词
D O I
10.1063/1.528964
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinear corrections to the Schrödinger equation based on the results of geometric quantum mechanics (GQM) are derived. Such theory derives quantum mechanics from the underlying Weyl space-time geometry associated with the classical ensemble of particle paths given by the solutions of the Hamilton-Jacobi equation. © 1990 American Institute of Physics.
引用
收藏
页码:2633 / 2636
页数:4
相关论文
共 8 条
[1]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[2]  
CASTRO C, IN PRESS F PHYS
[3]  
CASTRO C, DOE11187 TEX PREPR
[5]   GEOMETRIC DERIVATION OF THE SCHRODINGER-EQUATION FROM CLASSICAL MECHANICS IN CURVED WEYL SPACES [J].
SANTAMATO, E .
PHYSICAL REVIEW D, 1984, 29 (02) :216-222
[6]   GAUGE-INVARIANT STATISTICAL-MECHANICS AND AVERAGE ACTION PRINCIPLE FOR THE KLEIN-GORDON PARTICLE IN GEOMETRIC QUANTUM-MECHANICS [J].
SANTAMATO, E .
PHYSICAL REVIEW D, 1985, 32 (10) :2615-2621
[7]  
WEINBERG S, UTTG2988
[8]  
WEINBERG S, UTTG1588