Gabor frames with trigonometric spline dual windows

被引:5
作者
Kim, Inrni [1 ]
机构
[1] Wolfram Res, 100 Trade Ctr Dr, Champaign, IL 61820 USA
关键词
Gabor frame; Gabor dual windows; trigonometric spline dual windows;
D O I
10.1142/S1793557115500722
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A dual Gabor window pair has two functions that can reconstruct any function in L-2(R) using certain systems of their modulated and translated forms. Few explicit examples of dual Gabor window pairs are known. This paper constructs explicit examples with trigonometric form in one dimension as well as higher dimensions. Also, in the discrete time domain, the trigonometric form allows us to evaluate the Gabor coefficients efficiently using the Discrete Fourier Transform. The windows have fixed support and arbitrary smoothness.
引用
收藏
页数:32
相关论文
共 19 条
[1]  
Christensen, 2007, THESIS
[2]   DUAL PAIRS OF GABOR FRAMES FOR TRIGONOMETRIC GENERATORS WITHOUT THE PARTITION OF UNITY PROPERTY [J].
Christensen, O. ;
Jakobsen, Mads Sielemann .
ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2011, 4 (04) :589-603
[3]  
Christensen O., 2014, APPL COMPUT IN PRESS
[4]  
Christensen O., 2016, INTRO FRAMES RIESZ B
[5]   Pairs of explicitly given dual Gabor frames in L2(Rd) [J].
Christensen, Ole ;
Kim, Rae Young .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (03) :243-255
[6]   Pairs of dual Gabor frame generators with compact support and desired frequency localization [J].
Christensen, Ole .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (03) :403-410
[7]  
Christensen O, 2008, APPL NUMER HARMON AN, P1, DOI 10.1007/978-0-8176-4678-3_1
[8]   On Dual Gabor Frame Pairs Generated by Polynomials [J].
Christensen, Ole ;
Kim, Rae Young .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (01) :1-16
[9]   Gabor windows supported on [-1,1] and compactly supported dual windows [J].
Christensen, Ole ;
Kim, Hong Oh ;
Kim, Rae Young .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 28 (01) :89-103
[10]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283