Hyperspectral Remote Sensing of Vegetation

被引:59
|
作者
Im, Jungho [1 ]
Jensen, John R. [2 ]
机构
[1] SUNY Syracuse, Coll Environm Sci & Forestry, Environm Resources & Forest Engn, Syracuse, NY 13210 USA
[2] Univ South Carolina, Geog, Columbia, SC 29208 USA
来源
GEOGRAPHY COMPASS | 2008年 / 2卷 / 06期
关键词
D O I
10.1111/j.1749-8198.2008.00182.x
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Hyperspectral analysis of vegetation involves obtaining spectral reflectance measurements in hundreds of bands in the electromagnetic spectrum. These measurements may be obtained using hand-held spectroradiometers or hyperspectral remote sensing instruments placed onboard aircraft or satellites. Hyperspectral remote sensing provides valuable information about vegetation type, leaf area index, biomass, chlorophyll, and leaf nutrient concentration which are used to understand ecosystem functions, vegetation growth, and nutrient cycling. This article first reviews hyperspectral remote sensing and then describes current modeling and classification techniques used to estimate and predict vegetation type and biophysical characteristics.
引用
收藏
页码:1943 / 1961
页数:19
相关论文
共 50 条
  • [1] Hyperspectral remote sensing of vegetation and agricultural crops
    Thenkabail, Prasad S.
    Gumma, Murali Krishna
    Teluguntla, Pardhasaradhi
    Ahmed, Mohammed Irshad
    Photogrammetric Engineering and Remote Sensing, 2013, 79 (09):
  • [2] HYPERSPECTRAL REMOTE SENSING OF VEGETATION AND AGRICULTURAL CROPS
    Thenkabail, Prasad S.
    Gumma, Murali Krishna
    Teluguntla, Pardhasaradhi
    Mohammed, Irshad A.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2014, 80 (08): : 697 - 709
  • [3] Advances in hyperspectral remote sensing of vegetation traits and functions
    Zhang, Yongguang
    Migliavacca, Mirco
    Penuelas, Josep
    Ju, Weimin
    REMOTE SENSING OF ENVIRONMENT, 2021, 252 (252)
  • [4] AIRBORNE HYPERSPECTRAL REMOTE SENSING FOR IDENTIFICATION GRASSLAND VEGETATION
    Burai, P.
    Tomor, T.
    Beko, L.
    Deak, B.
    ISPRS GEOSPATIAL WEEK 2015, 2015, 40-3 (W3): : 427 - 431
  • [5] Special Issue "Hyperspectral Remote Sensing of Agriculture and Vegetation"
    Pascucci, Simone
    Pignatti, Stefano
    Casa, Raffaele
    Darvishzadeh, Roshanak
    Huang, Wenjiang
    REMOTE SENSING, 2020, 12 (21) : 1 - 7
  • [6] New progress in study on vegetation models for hyperspectral remote sensing
    Tong, QX
    Zhao, YC
    Zhang, X
    Zhang, B
    Zheng, LF
    HYPERSPECTRAL REMOTE SENSING OF THE LAND AND ATMOSPHERE, 2001, 4151 : 143 - 152
  • [7] Optimization of spectral bands for hyperspectral remote sensing of forest vegetation
    Dmitriev, Egor V.
    Kozoderov, Vladimir V.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XV, 2013, 8887
  • [8] Progress in Inversion of Vegetation Nitrogen Concentration by Hyperspectral Remote Sensing
    Wang Li-wen
    Wei Ya-xing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (10) : 2823 - 2827
  • [9] Hyperspectral Remote Sensing in Monitoring the Vegetation Heavy Metal Pollution
    Li Na
    Lue Jian-sheng
    Altermann, W.
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30 (09) : 2508 - 2511
  • [10] UAV BASED HYPERSPECTRAL REMOTE SENSING AND CNN FOR VEGETATION CLASSIFICATION
    Sankararao, Adduru U. G.
    Rajalakshmi, P.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 7737 - 7740