Study of the NDVI with multi-scale and time-series analysis using SPOT imagery during the period 1998-2012 in Uruguay

被引:10
作者
Ceroni, M. [1 ]
Achkar, M. [2 ]
Gazzano, I. [3 ]
Burgeno, J. [4 ]
机构
[1] Univ Republica, Ctr Interdisciplinario Respuesta Cambio & Variabi, Espacio Interdisciplinario, Jose E Rodo 1843, Montevideo, Uruguay
[2] Univ Republica, Fac Ciencias, Inst Ecol & Ciencias Ambientales, Lab Desarrollo Sustentable & Gest Ambiental Terr, Montevideo, Uruguay
[3] Univ Republica, Fac Agron, Dept Sistemas Ambient, Montevideo, Uruguay
[4] Ctr Int Mejoramiento Maize & Trigo, Unidad Estadist & Biometr, Veracruz, Estado De Mexic, Mexico
来源
REVISTA DE TELEDETECCION | 2015年 / 43期
关键词
NDVI; time series; SPOT; multi-scalar approach; remote sensing;
D O I
10.4995/raet.2015.3683
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Vegetation indices are a relevant source of information for spatial monitoring of vegetation at multiple scales. Among them, the Normalized Difference Vegetation Index (NDVI) is one of the most commonly used. This study aims to describe and analyze the spatial patterns of the NDVI in terrestrial systems in Uruguay at the onset of the 21st Century. A multiscalar approach (country, basin and sites) was applied using time series analysis of NDVI values obtained from SPOT 4 and 5 images through the program Instrument Vegetation (VGT). The analyzed time series showed a significant fit of the Autocorrelated Integrated Moving Averages (ARIMA) model, with an autocorrelation of order 2 and a level of integration of order 1, ARIMA (211). A significant decline of the NDVI over all spatial units was found, with agricultural units (site scale) showing the most negative slope. This study provides baseline data on changes in vegetation productivity for Uruguay, and develops an accurate and robust methodology for spatio-temporal analysis of NDVI series. Remote sensing techniques are shown to be relevant to improve the management of environmental systems.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 53 条
[1]  
Barbosa H, 2013, ENVIRONMENTAL CHANGE AND SUSTAINABILITY, P91, DOI 10.5772/55499
[2]  
Campbell J.B., 1996, INTRO REMOTE SENSING
[3]   On the relation between NDVI, fractional vegetation cover, and leaf area index [J].
Carlson, TN ;
Ripley, DA .
REMOTE SENSING OF ENVIRONMENT, 1997, 62 (03) :241-252
[4]  
Carreras J., 2002, INT J REMOTE SENS, V23, P4983
[5]   Consequences of changing biodiversity [J].
Chapin, FS ;
Zavaleta, ES ;
Eviner, VT ;
Naylor, RL ;
Vitousek, PM ;
Reynolds, HL ;
Hooper, DU ;
Lavorel, S ;
Sala, OE ;
Hobbie, SE ;
Mack, MC ;
Diaz, S .
NATURE, 2000, 405 (6783) :234-242
[6]   Modelling carbon budget of Mediterranean forests using ground and remote sensing measurements [J].
Chiesi, M ;
Maselli, F ;
Bindi, M ;
Fibbi, L ;
Cherubini, P ;
Arlotta, E ;
Tirone, G ;
Matteucci, G ;
Seufert, G .
AGRICULTURAL AND FOREST METEOROLOGY, 2005, 135 (1-4) :22-34
[7]   Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data [J].
Chirici, Gherardo ;
Barbati, Anna ;
Maselli, Fabio .
FOREST ECOLOGY AND MANAGEMENT, 2007, 246 (2-3) :285-295
[8]  
Chuvieco E, 2000, FUNDAMENTOS TELEDETE
[9]   Thematic mapper (TM) based accuracy assessment of a land cover product for Canada derived from SPOT VEGETATION (VGT) data [J].
Cihlar, J ;
Latifovic, R ;
Beaubien, J ;
Guindon, B ;
Palmer, M .
CANADIAN JOURNAL OF REMOTE SENSING, 2003, 29 (02) :154-170
[10]   DEM generation using ASAR (ENVISAT) for addressing the lack of freshwater ecosystems management, Santa Cruz Island, Galapagos [J].
d'Ozouville, Noemi ;
Deffontaines, Benoit ;
Benveniste, Jerome ;
Wegmueller, Urs ;
Violette, Sophie ;
de Marsily, Ghislain .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (11) :4131-4147