Multidimensional Data Visualization Based on the Exponential Correlation Function

被引:0
作者
Ringiene, Laura [1 ]
Dzemyda, Gintautas [1 ]
机构
[1] Vilnius Univ, Inst Math & Informat, Akad Str 4, LT-08663 Vilnius, Lithuania
来源
BALTIC JOURNAL OF MODERN COMPUTING | 2013年 / 1卷 / 1-2期
关键词
exponential correlation function; clustering; multidimensional scaling; visualization;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Multidimensional data are often difficult to understand for a human because of their high dimensionality. Multidimensional data visualization is one of the ways for data perception where multidimensional data must be transformed in a low-dimensional space and presented visually for human decision. As a result of transformation there appear new data features, the number of which is lower than that of the original data features. In this paper, we present and investigate the way of reduction of dimensionality using the exponential correlation function, taking into account that there are clusters in the analysed set of multidimensional data.
引用
收藏
页码:9 / 28
页数:20
相关论文
共 15 条
[1]   On the kernel widths in radial-basis function networks [J].
Benoudjit, N ;
Verleysen, M .
NEURAL PROCESSING LETTERS, 2003, 18 (02) :139-154
[2]  
Borg I., MODERN MULTIDIMENSIO
[3]  
Buhmann MD., 2003, C MO AP C M, DOI 10.1017/CBO9780511543241
[4]  
Chang Q, 2005, PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, P19
[5]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[6]  
Dunham M.H., 2003, DATA MINING INTRO AD
[7]  
Dzemyda G., 2013, SPRINGER OPTIMIZATIO, V75
[8]  
Han J, 2012, MOR KAUF D, P1
[9]  
Haykin S., 2010, NEURAL NETWORKS
[10]   MULTIDIMENSIONAL-SCALING BY OPTIMIZING GOODNESS OF FIT TO A NONMETRIC HYPOTHESIS [J].
KRUSKAL, JB .
PSYCHOMETRIKA, 1964, 29 (01) :1-27