REVERSE ORDER LAWS FOR GENERALIZED INVERSES OF MULTIPLE MATRIX PRODUCTS

被引:89
作者
TIAN, YG
机构
[1] Zhengzhou Technical School for Surveying and Mapping Zhengzhou
关键词
D O I
10.1016/0024-3795(94)90084-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using the ranks of matrices, this article gives necessary and sufficient conditions for the reverse product A(n)+ ... A2+A1+ of the Moore-Penrose inverses of A1, A2,...,A(n) to be a {1}-inverse (inner inverse), {1, 2}-inverse (reflexive inner inverse), {1,3}-inverse, {1,4}-inverse, inverse, {1,2,3}-inverse, {1,2,4}-inverse, or Moore-Penrose inverse of matrix product A = A1A2...A(n).
引用
收藏
页码:85 / 100
页数:16
相关论文
共 12 条
[1]  
Arghiriade E, 1967, ATTI ACCAD NA 8 SFMN, V42, P621
[2]  
BENISRAEL A, 1974, GENERALIZED INVERSES
[3]  
CAMPBELL SL, 1979, GENERALIZED INVERSES
[4]   ABOUT THE GROUP INVERSE AND MOORE-PENROSE INVERSE OF A PRODUCT [J].
GOUVEIA, MC ;
PUYSTJENS, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 150 :361-369
[5]   NOTE ON GENERALIZED INVERSE OF A MATRIX PRODUCT [J].
GREVILLE, TN .
SIAM REVIEW, 1966, 8 (04) :518-&
[6]  
Hartwig R.E., 1984, LINEAR MULTILINEAR A, V14, P241, DOI DOI 10.1080/03081088308817561
[7]   BLOCK GENERALIZED INVERSES [J].
HARTWIG, RE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 61 (03) :197-251
[8]   THE REVERSE ORDER LAW REVISITED [J].
HARTWIG, RE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 76 :241-246
[9]  
HARTWIG RE, 1976, J IND MATH SOC, V26, P49
[10]  
Matsaglia G., 1974, LINEAR MULTILINEAR A, V2, P269, DOI DOI 10.1080/03081087408817070