THE JORDAN-SCHWINGER REPRESENTATIONS OF CAYLEY-KLEIN GROUPS .1. THE ORTHOGONAL GROUPS

被引:25
作者
GROMOV, NA [1 ]
MANKO, VI [1 ]
机构
[1] PN LEBEDEV PHYS INST,MOSCOW 117333,USSR
关键词
D O I
10.1063/1.528781
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Cayley-Klein groups are defined as the groups that are obtained by the contractions and analytical continuations of the orthogonal groups. The Jordan-Schwinger representations of Cayley-Klein groups are discussed based on the mixed sets of creation and annihilation operators of boson or fermion type. The matrix elements of finite group transformations are obtained in the bases of coherent and Fock states. © 1990 American Institute of Physics.
引用
收藏
页码:1047 / 1053
页数:7
相关论文
共 23 条
[1]  
Bateman H., 1953, HIGHER TRANSCENDENTA, V2
[2]  
BERESIN FA, 1965, 2ND QUANTIZATION MET
[3]  
Biedenharn L. C., 1981, ENCY MATH ITS APPL, V8
[4]  
DODONOV VV, 1987, T FIAN, V183, P182
[5]   COHERENT AND INCOHERENT STATES OF RADIATION FIELD [J].
GLAUBER, RJ .
PHYSICAL REVIEW, 1963, 131 (06) :2766-+
[6]  
GROMOV NA, 1986, GROUP THEORETICAL ME, V2, P183
[7]  
GROMOV NA, 1984, 95 KOM BRANCH AC SCI
[8]  
GROMOV NA, 1981, TEOR MAT FIZ, V49, P210
[9]  
GROMOV NA, 1982, MAT ZAMETKI, V32, P355
[10]  
GROMOV NA, 1985, 126 KOM BRANCH AC SC