Exponential Stability in Hyperbolic Thermoelastic Diffusion Problem with Second Sound

被引:3
作者
Aouadi, Moncef [1 ]
机构
[1] Inst Super Sci Appl & Technol Mateur, Dept Math, Route Tabarka, Mateur 7030, Tunisia
关键词
D O I
10.1155/2011/274843
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a thermoelastic diffusion problem in one space dimension with second sound. The thermal and diffusion disturbances are modeled by Cattaneo's law for heat and diffusion equations to remove the physical paradox of infinite propagation speed in the classical theory within Fourier's law. The system of equations in this case is a coupling of three hyperbolic equations. It poses some new analytical and mathematical difficulties. The exponential stability of the slightly damped and totally hyperbolic system is proved. Comparison with classical theory is given.
引用
收藏
页数:21
相关论文
共 21 条
[1]   Generalized theory of thermoelastic diffusion for anisotropic media [J].
Aouadi, Moncef .
JOURNAL OF THERMAL STRESSES, 2008, 31 (03) :270-285
[2]   Polynomial and exponential stability for one-dimensional problem in thermoelastic diffusion theory [J].
Aouadi, Moncef ;
Soufyane, Abdelaziz .
APPLICABLE ANALYSIS, 2010, 89 (06) :935-948
[3]   Qualitative Results in the Theory of Thermoelastic Diffusion Mixtures [J].
Aouadi, Moncef .
JOURNAL OF THERMAL STRESSES, 2010, 33 (06) :595-615
[4]   A theory of thermoelastic diffusion materials with voids [J].
Aouadi, Moncef .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (02) :357-379
[5]   The coupled theory of micropolar thermoelastic diffusion [J].
Aouadi, Moncef .
ACTA MECHANICA, 2009, 208 (3-4) :181-203
[6]   Theory of Generalized Micropolar Thermoelastic Diffusion Under Lord-Shulman Model [J].
Aouadi, Moncef .
JOURNAL OF THERMAL STRESSES, 2009, 32 (09) :923-942
[7]  
Dafermos C. M., 1976, SPRINGER LECT NOTES, V503, P295
[8]  
Jiang S., 2000, EVOLUTION EQUATIONS, V112
[9]   Decay rates for the three-dimensional linear system of thermoelasticity [J].
Lebeau, G ;
Zuazua, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (03) :179-231
[10]   A GENERALIZED DYNAMICAL THEORY OF THERMOELASTICITY [J].
LORD, HW ;
SHULMAN, Y .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1967, 15 (05) :299-&