Indecomposable vector-valued modular forms and periods of modular curves

被引:3
作者
Candelori, Luca [1 ]
Hartland, Tucker [2 ]
Marks, Christopher [3 ]
Yepez, Diego [4 ]
机构
[1] Univ Hawaii, Dept Math, 2565 McCarthy Mall, Honolulu, HI 96822 USA
[2] Univ Calif Merced, Dept Appl Math, 5200 N Lake Rd, Merced, CA 95343 USA
[3] Calif State Univ Chico, Dept Math & Stat, 400 West First St, Chico, CA 95929 USA
[4] Univ Pacific, Sch Engn & Comp Sci, 3601 Pacific Ave, Stockton, CA 95211 USA
来源
RESEARCH IN NUMBER THEORY | 2018年 / 4卷
关键词
Indecomposable representations; Modular forms; Periods;
D O I
10.1007/s40993-018-0113-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the three-dimensional representations of the modular group that are reducible but indecomposable, and their associated spaces of holomorphic vector-valued modular forms. We then demonstrate how such representations may be employed to compute periods of modular curves. This technique obviates the use of Hecke operators, and therefore provides a method for studying noncongruence modular curves as well as congruence.
引用
收藏
页数:24
相关论文
共 18 条
  • [1] Secord-order cusp forms and mixed mock modular forms
    Bringmann, Kathrin
    Kane, Ben
    [J]. RAMANUJAN JOURNAL, 2013, 31 (1-2) : 147 - 161
  • [2] Candelori L., 2017, ARXIV170701693MATHAG
  • [3] Vector-valued modular forms and the modular orbifold of elliptic curves
    Candelori, Luca
    Franc, Cameron
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (01) : 39 - 63
  • [4] Congruence subgroups of PSL(2, Z) of genus less than or equal to 24
    Cummins, CJ
    Pauli, S
    [J]. EXPERIMENTAL MATHEMATICS, 2003, 12 (02) : 243 - 255
  • [5] FARKAS H. M., 1980, GRADUATE TEXTS MATH, V71
  • [6] Fourier Coefficients of Vector-valued Modular Forms of Dimension 2
    Franc, Cameron
    Mason, Geoffrey
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (03): : 485 - 494
  • [7] Franc Cameron, 2014, RAMANUJAN J, P1
  • [8] Generalized modular forms
    Knopp, M
    Mason, G
    [J]. JOURNAL OF NUMBER THEORY, 2003, 99 (01) : 1 - 28
  • [9] Manin JI., 1972, MATH USSR IZVESTIYA, V6, P19, DOI [10.1070/IM1972v006n01ABEH001867, DOI 10.1070/IM1972V006N01ABEH001867]
  • [10] Structure of the module of vector-valued modular forms
    Marks, Christopher
    Mason, Geoffrey
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 32 - 48