A CUTOFF THEOREM FOR PLURISUBHARMONIC CURRENTS

被引:26
作者
BASSANELLI, G
机构
[1] Dipartimento di Matematica, Universita di Trento, 1-38050, Povo, (Trento)
关键词
D O I
10.1515/form.1994.6.567
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how plurisubharmonic currents can be studied by means of a suitable modification of Federer's theory of flat currents. The goal of the paper is to show that if T is a positive plurisubharmonic current on an open subset OMEGA of C(N), then the cut-off CHI(Y)T by an analytic subset Y of OMEGA is the current of integration f[Y], for a suitable plurisubharmonic function f on Y.
引用
收藏
页码:567 / 595
页数:29
相关论文
共 13 条
[1]   PLURISUBHARMONIC CURRENTS AND THEIR EXTENSION ACROSS ANALYTIC SUBSETS [J].
ALESSANDRINI, L ;
BASSANELLI, G .
FORUM MATHEMATICUM, 1993, 5 (06) :577-602
[2]  
Alessandrini L., 1992, J GEOM ANAL, V2, P291, DOI DOI 10.1007/BF02934583
[3]  
Demailly, 1985, MEM SOC MATH FRANCE, V19
[4]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[5]   EXTENDING ANALYTIC OBJECTS [J].
HARVEY, R ;
POLKING, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (06) :701-727
[6]   REMOVABLE SINGULARITIES FOR POSITIVE CURRENTS [J].
HARVEY, R .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (01) :67-78
[7]  
HARVEY R, INTRO GEOMETRIC MEAS
[8]  
HARVEY R, 1974, P S PURE APPL MATH, V99, P533
[9]  
Hormander L, 1983, GRUNDLEHREN MATH WIS, V256
[10]   CURRENTS DEFINED BY ANALYTIC VARIETIES [J].
KING, JR .
ACTA MATHEMATICA UPPSALA, 1971, 127 (3-4) :185-&