Fragment-based drug discovery and protein-protein interactions

被引:16
|
作者
Turnbull, Andrew P. [1 ]
Boyd, Susan M. [2 ]
Walse, Bjorn [3 ]
机构
[1] Birkbeck Univ London, Dept Biol Sci, CRT Discovery Labs, London WC1E 7HX, England
[2] IOTA Pharmaceut Ltd, Cambridge, England
[3] SAR Biostruct AB, Lund, Sweden
关键词
hot spot; druggability; ligandability;
D O I
10.2147/RRBC.S28428
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-protein interactions (PPIs) are involved in many biological processes, with an estimated 400,000 PPIs within the human proteome. There is significant interest in exploiting the relatively unexplored potential of these interactions in drug discovery, driven by the need to find new therapeutic targets. Compared with classical drug discovery against targets with well-defined binding sites, developing small-molecule inhibitors against PPIs where the contact surfaces are frequently more extensive and comparatively flat, with most of the binding energy localized in "hot spots", has proven far more challenging. However, despite the difficulties associated with targeting PPIs, important progress has been made in recent years with fragmentbased drug discovery playing a pivotal role in improving their tractability. Computational and empirical approaches can be used to identify hot-spot regions and assess the druggability and ligandability of new targets, whilst fragment screening campaigns can detect low-affinity fragments that either directly or indirectly perturb the PPI. Once fragment hits have been identified and confirmed using biochemical and biophysical approaches, three-dimensional structural data derived from nuclear magnetic resonance or X-ray crystallography can be used to drive medicinal chemistry efforts towards the development of more potent inhibitors. A small-scale comparison presented in this review of "standard" fragments with those targeting PPIs has revealed that the latter tend to be larger, be more lipophilic, and contain more polar (acid/base) functionality, whereas three-dimensional descriptor data indicate that there is little difference in their three-dimensional character. These physiochemical properties can potentially be exploited in the rational design of PPI-specific fragment libraries and correlate well with optimized PPI inhibitors, which tend to have properties outside currently accepted guidelines for drug-likeness. Several examples of small-molecule PPI inhibitors derived from fragment- based drug discovery now exist and are described in this review, including navitoclax, a novel Bcl-2 family inhibitor which has entered Phase II clinical trials in patients with small-cell lung cancer and chronic lymphocytic leukemia.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 50 条
  • [41] Targeting YAP/TAZ-TEAD protein-protein interactions using fragment-based and computational modeling approaches
    Kaan, Hung Yi Kristal
    Sim, Adelene Y. L.
    Tan, Siew Kim Joyce
    Verma, Chandra
    Song, Haiwei
    PLOS ONE, 2017, 12 (06):
  • [42] Experiences in fragment-based drug discovery
    Murray, Christopher W.
    Verdonk, Marcel L.
    Rees, David C.
    TRENDS IN PHARMACOLOGICAL SCIENCES, 2012, 33 (05) : 224 - 232
  • [43] The rise of fragment-based drug discovery
    Murray, Christopher W.
    Rees, David C.
    NATURE CHEMISTRY, 2009, 1 (03) : 187 - 192
  • [44] Introduction to Fragment-Based Drug Discovery
    Erlanson, Daniel A.
    FRAGMENT-BASED DRUG DISCOVERY AND X-RAY CRYSTALLOGRAPHY, 2012, 317 : 1 - 32
  • [45] The rise of fragment-based drug discovery
    Murray C.W.
    Rees D.C.
    Nature Chemistry, 2009, 1 (3) : 187 - 192
  • [46] Tethering: Fragment-based drug discovery
    Erlanson, DA
    Wells, JA
    Braisted, AC
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2004, 33 : 199 - 223
  • [47] Dissecting Fragment-Based Lead Discovery at the von Hippel-Lindau Protein:Hypoxia Inducible Factor 1α Protein-Protein Interface
    Van Molle, Inge
    Thomann, Andreas
    Buckley, Dennis L.
    So, Ernest C.
    Lang, Steffen
    Crews, Craig M.
    Ciulli, Alessio
    CHEMISTRY & BIOLOGY, 2012, 19 (10): : 1300 - 1312
  • [48] Fragonomics: fragment-based drug discovery
    Zartler, ER
    Shapiro, MJ
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (04) : 366 - 370
  • [49] Considerations of Protein Subpockets in Fragment-Based Drug Design
    Bartolowits, Matthew
    Davisson, V. Jo
    CHEMICAL BIOLOGY & DRUG DESIGN, 2016, 87 (01) : 5 - 20
  • [50] An integrated strategy for the discovery of drug targets by the analysis of protein-protein interactions
    Peltier, JM
    Askovic, S
    Becklin, RR
    Chepanoske, CL
    Ho, YSJ
    Kery, V
    Lai, SP
    Mujtaba, T
    Pyne, M
    Robbins, PB
    von Rechenberg, M
    Richardson, B
    Savage, J
    Sheffield, P
    Thompson, S
    Weir, L
    Widjaja, K
    Xu, NF
    Zhen, YJ
    Boniface, JJ
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 2004, 238 (02) : 119 - 130