IMMERSED POLYHEDRAL SURFACE WHICH FLEXES

被引:6
|
作者
CONNELLY, R [1 ]
机构
[1] CORNELL UNIV,ITHACA,NY 14850
关键词
D O I
10.1512/iumj.1976.25.25076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:965 / 972
页数:8
相关论文
共 50 条
  • [1] The six-vertex theorem for closed planar curve which bounds and immersed surface
    Yüksel, N
    Özdemir, M
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (06): : 723 - 735
  • [2] On the use of polyhedral unstructured grids with a moving immersed boundary method
    Martins, Diogo M. C.
    Albuquerque, Duarte M. S.
    Pereira, Jose C. F.
    COMPUTERS & FLUIDS, 2018, 174 : 78 - 88
  • [3] A New Order of the Polyhedral Honeycombs II: Which Polyhedron Mates with Which?
    Meurant, Robert C.
    2015 8TH INTERNATIONAL CONFERENCE ON U- AND E-SERVICE, SCIENCE AND TECHNOLOGY (UNESST), 2015, : 66 - 71
  • [4] 6-VERTEX THEOREM FOR CLOSED PLANAR CURVE WHICH BOUNDS AN IMMERSED SURFACE WITH NONZERO GENUS
    UMEHARA, M
    NAGOYA MATHEMATICAL JOURNAL, 1994, 134 : 75 - 89
  • [6] Polyhedral surface decomposition with applications
    Zuckerberger, E
    Tal, A
    Shlafman, S
    COMPUTERS & GRAPHICS-UK, 2002, 26 (05): : 733 - 743
  • [7] Facility location on a polyhedral surface
    Aronov, B
    van Kreveld, M
    van Oostrum, R
    Varadarajan, K
    DISCRETE & COMPUTATIONAL GEOMETRY, 2003, 30 (03) : 357 - 372
  • [8] STORING THE SUBDIVISION OF A POLYHEDRAL SURFACE
    MOUNT, DM
    DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (02) : 153 - 174
  • [9] Facility Location on a Polyhedral Surface
    Boris Aronov
    Marc van Kreveld
    René van Oostrum
    Kasturi Varadarajan
    Discrete & Computational Geometry, 2003, 30 : 357 - 372
  • [10] Diameter of an immersed surface with boundary
    Paeng, Seong-Him
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 33 : 127 - 138