SOME NODES MATRICES APPEARING IN THE NUMERICAL-ANALYSIS FOR SINGULAR INTEGRAL-EQUATIONS

被引:9
作者
MASTROIANNI, G
PROSSDORF, S
机构
[1] UNIV BASILICATA,DIP MATEMAT,I-85100 POTENZA,ITALY
[2] INST ANGEW ANAL & STOCHAST,D-10117 BERLIN,GERMANY
来源
BIT | 1994年 / 34卷 / 01期
关键词
LAGRANGE INTERPOLATION; ORTHOGONAL POLYNOMIALS; INTERLACING PROPERTIES;
D O I
10.1007/BF01935021
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let {p(m)(w)} be the sequence of Jacobi polynomials corresponding to the weight w(x) = (1 - x)alpha(1 + x)beta, 0 < alpha, beta < 1. Denote by x(k)(w) = cos theta(m,k)(w), k = 1,...,m, the zeros of p(m)(w). If alpha + beta = 0, then the estimates c1m-1 less-than-or-equal-to\theta(m,k)(w-1)\less-than-or-equal-to c2m-1 hold uniformly with respect to k and m (Theorem 2.1). A similar result holds in the case alpha + beta = 1. Moreover, approximation properties of the Lagrange polynomial interpolating a function at the zeros of p(m)(w)p(m)(w-1) and at +/- 1 are studied (Theorem 2.3). These results have a crucial role in the error analysis of quadrature methods for solving Cauchy singular integral equations on the interval (-1, 1) [6].
引用
收藏
页码:120 / 128
页数:9
相关论文
共 9 条
[1]  
CRISCUOLO G, 1990, MATH COMPUT, V55, P197, DOI 10.1090/S0025-5718-1990-1023044-X
[2]   POINTWISE SIMULTANEOUS CONVERGENCE OF EXTENDED LAGRANGE INTERPOLATION WITH ADDITIONAL KNOTS [J].
CRISCUOLO, G ;
MASTROIANNI, G ;
VERTESI, P .
MATHEMATICS OF COMPUTATION, 1992, 59 (200) :515-531
[3]   UNIFORM-CONVERGENCE OF DERIVATIVES OF EXTENDED LAGRANGE INTERPOLATION [J].
CRISCUOLO, G ;
MASTROIANNI, G ;
OCCORSIO, D .
NUMERISCHE MATHEMATIK, 1991, 60 (02) :195-218
[4]   MEAN CONVERGENCE OF DERIVATIVES OF EXTENDED LAGRANGE INTERPOLATION WITH ADDITIONAL NODES [J].
CRISCUOLO, G ;
MASTROIANNI, G ;
NEVAI, P .
MATHEMATISCHE NACHRICHTEN, 1993, 163 :73-92
[5]  
JUNGHANNS P, 1988, NUMERICAL ANAL QUADR
[6]  
Mastroianni G., 1992, J INTEGRAL EQUAT, V4, P205, DOI DOI 10.1216/jiea/1181075682
[7]   MEAN CONVERGENCE OF LAGRANGE INTERPOLATION .1. [J].
NEVAI, GP .
JOURNAL OF APPROXIMATION THEORY, 1976, 18 (04) :363-377
[8]  
PROSSDORF S., 1991, NUMERICAL ANAL INTEG
[9]  
Szego G., 1985, ORTHOGONAL POLYNOMIA, V23