Solutions of Nabla Fractional Difference Equations Using N-Transforms

被引:17
|
作者
Mohan, J. Jagan [1 ]
Deekshitulu, G. V. S. R. [2 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad 500078, Andhra Pradesh, India
[2] JNTU Kakinada, Dept Math, Kakinada 533003, Andhra Pradesh, India
关键词
Fractional difference; Caputo type; Exponential order; N-transform; Discrete Mittag-Leffler function;
D O I
10.1007/s40304-014-0027-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we present some important properties of N-transform, which is the Laplace transform for the nabla derivative on the time scale of integers (Bohner and Peterson in Dynamic equations on time scales, Birkhauser, Boston, 2001; Advances in dynamic equations on time scales, Birkhauser, Boston, 2002). We obtain the N-transform of nabla fractional sums and differences and then apply this transform to solve some nabla fractional difference equations with initial value problems. Finally, using N-transforms, we prove that discrete Mittag-Leffler function is the eigen function of Caputo type nabla fractional difference operator del(alpha).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [31] Stability criteria for volterra type linear nabla fractional difference equations
    Gevgesoglu, Murat
    Bolat, Yasar
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (06) : 4161 - 4171
  • [32] On non-homogeneous singular systems of fractional nabla difference equations
    Dassios, Ioannis K.
    Baleanu, Dumitru I.
    Kalogeropoulos, Grigoris I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 : 112 - 131
  • [33] Stability criteria for volterra type linear nabla fractional difference equations
    Murat Gevgeşoğlu
    Yaşar Bolat
    Journal of Applied Mathematics and Computing, 2022, 68 : 4161 - 4171
  • [34] Existence of (N, λ)-Periodic Solutions for Abstract Fractional Difference Equations
    Alvarez, Edgardo
    Diaz, Stiven
    Lizamao, Carlos
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [35] Existence and asymptotic behaviors of nonlinear neutral Caputo nabla fractional difference equations
    Mouataz Billah Mesmouli
    Abdelouaheb Ardjouni
    Naveed Iqbal
    Afrika Matematika, 2022, 33
  • [36] Some results on linear nabla Riemann-Liouville fractional difference equations
    The Anh, Pham
    Babiarz, Artur
    Czornik, Adam
    Niezabitowski, Michal
    Siegmund, Stefan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (13) : 7815 - 7824
  • [37] Existence and asymptotic behaviors of nonlinear neutral Caputo nabla fractional difference equations
    Mesmouli, Mouataz Billah
    Ardjouni, Abdelouaheb
    Iqbal, Naveed
    AFRIKA MATEMATIKA, 2022, 33 (03)
  • [38] Liapunov functional and stability of linear nabla (q, h)-fractional difference equations
    Jia, Baoguo
    Chen, Siyuan
    Erbe, Lynn
    Peterson, Allan
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (12) : 1974 - 1985
  • [39] Existence and rapid convergence results for nonlinear Caputo nabla fractional difference equations
    Liu, Xiang
    Jia, Baoguo
    Erbe, Lynn
    Peterson, Allan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (51) : 1 - 16
  • [40] EXISTENCE AND STABILITY OF SOLUTIONS FOR NABLA FRACTIONAL DIFFERENCE SYSTEMS WITH ANTI-PERIODIC
    Jonnalagadda, Jagan mohan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (05): : 739 - 754