FUNCTIONS WITH CONSTANT GENERALIZED-GRADIENTS

被引:3
作者
JOUINI, E
机构
[1] Laboratoire d'Econométrie de l'Ecole Polytechnique, CERMSEM, Université Paris 1 Panthéon-Sorbonne, Ecole Normale Supérieure, Paris
关键词
D O I
10.1016/0022-247X(90)90032-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show that for every nonempty convex compact subset K of a finite dimensional space E there exists a Lipschitz function F: E → R, such that ∂F, generalized gradient of F in the sense of Clarke [4] is equal everywhere to K. © 1990.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 11 条
[1]  
BONNISSEAU JM, 1988, EXISTENCE MARGINAL C
[2]  
BONNISSEAU JM, 1988, J MATH EC, V17
[3]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[4]  
Clarke F.H., 1983, OPTIMIZATION NONSMOO
[5]   GENERALIZED GRADIENTS AND APPLICATIONS [J].
CLARKE, FH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :247-262
[6]  
CORNET B, 1987, MATH PROGRAM STUD, V30, P17, DOI 10.1007/BFb0121152
[7]  
JOUINI E, 1988, J MATH EC
[8]  
KURATOWSKI C, 1958, MONOGRAFIE MATH, V3
[9]  
LEBOURG G, 1975, CR HEBD ACAD SCI, V294, P115
[10]   CHARACTERIZATION OF SUBDIFFERENTIALS OF CONVEX FUNCTIONS [J].
ROCKAFEL.RT .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 17 (03) :497-&