ON THE ZAKHAROV AND ZAKHAROV-SCHULMAN SYSTEMS

被引:80
作者
KENIG, CE
PONCE, G
VEGA, L
机构
[1] UNIV CALIF SANTA BARBARA, DEPT MATH, SANTA BARBARA, CA 93106 USA
[2] UNIV BASQUE COUNTRY, FAC CIENCIAS, E-48080 BILBAO, SPAIN
关键词
D O I
10.1006/jfan.1995.1009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the initial value problem for the Zakharov system [GRAPHICS] which models the long wave Langmuir turbulence in a plasma. Using the standard iteration scheme in the original system it is shown that the system is locally well-posed uniformly on lambda (the ionic speed of sound) in appropriate Sobolev spaces. The method provides similar results for the IVP for the Zakharov-Schulman system [GRAPHICS] where u: R(d)x[0, infinity)-->C, phi: R(d)x[0, infinity)-->R, and [GRAPHICS] with a(i,j)(k)=a(j,i)(k) real constants, which models the interactions of small amplitude high frequency waves with acoustic type waves. (C) 1995 Academic Press, Inc.
引用
收藏
页码:204 / 234
页数:31
相关论文
共 32 条
[1]   NONLINEAR EVOLUTION EQUATIONS - 2 AND 3 DIMENSIONS [J].
ABLOWITZ, MJ ;
HABERMAN, R .
PHYSICAL REVIEW LETTERS, 1975, 35 (18) :1185-1188
[2]   EQUATIONS OF LANGMUIR TURBULENCE AND NONLINEAR SCHRODINGER-EQUATION - SMOOTHNESS AND APPROXIMATION [J].
ADDED, H ;
ADDED, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 79 (01) :183-210
[3]  
ADDED H, 1984, CR ACAD SCI I-MATH, V299, P551
[4]   ASYMPTOTIC PROPERTIES OF SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH SIMPLE CHARACTERISTICS [J].
AGMON, S ;
HORMANDER, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :1-38
[5]  
Constantin P., 1988, J AM MATH SOC, V1, P413, DOI [10.2307/1990923, DOI 10.2307/1990923]
[6]   3-DIMENSIONAL PACKETS OF SURFACE-WAVES [J].
DAVEY, A ;
STEWARTSON, K .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1974, 338 (1613) :101-110
[7]  
GHIDAGLIA JM, 1989, CR ACAD SCI I-MATH, V308, P115
[8]  
GHIDAGLIA JM, 1992, IN PRESS NONLINEAR D
[9]   BEHAVIOR OF SLOW LANGMUIR SOLITONS [J].
GIBBONS, J .
PHYSICS LETTERS A, 1978, 67 (01) :22-24
[10]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363