INTEGRABLE OPERATOR REPRESENTATIONS OF RQ(2), XQ,GAMMA AND SLQ(2,R)

被引:31
作者
SCHMUDGEN, K
机构
[1] Fachbereich Mathematik/Informatik, Universität Leipzig, Leipzig, D-04109
关键词
D O I
10.1007/BF02102637
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let q be a complex number such that Absolute value of q = 1 and q4 not-equal 1. Integrable (''well-behaved'') operator representations of the *-algebra SL(q)(2,R) in Hilbert space are defined and completely classified up to unitary equivalence. In order to do this, the relation xy - qyx = gamma(1 - q), gamma is-an-element-of R, for self-adjoint operators x and y is studied in detail. Integrable representations for this relation are defined and classified.
引用
收藏
页码:217 / 237
页数:21
相关论文
共 12 条
[1]  
Faddeev L.D., 1989, ALGEBRA ANALIZ, P178
[2]  
Faddeev L.D., 1986, LECT NOTES PHYS, V246, P166, DOI 10.1007/3-540-16452-9_10
[3]  
JORGENSEN PET, 1983, EXP MATH, V4, P289
[4]  
Katznelson Y., 1976, INTRO HARMONIC ANAL
[5]  
MANIN YI, 1988, PUBLICATIONS CRM, V1561
[6]  
Ostrovskii V. L., 1989, Reports on Mathematical Physics, V28, P91, DOI 10.1016/0034-4877(89)90027-X
[7]  
OSTROWSKI VL, 1991, 914 PREPR
[8]  
SCHMUDGEN K, 1990, UNBOUNDED OPERATOR A
[9]  
Schmudgen K., 1993, PUBL RIMS, V29, P1030
[10]  
VANDAELE A, 1990, PREPRINT