REMARKS ON THE LOWER AND UPPER SOLUTIONS METHOD FOR 2ND-ORDER AND 3RD-ORDER PERIODIC BOUNDARY-VALUE-PROBLEMS

被引:59
作者
OMARI, P
TROMBETTA, M
机构
[1] Dipartimento di Scienze Matematiche Università di Trieste Piazzale Europa 1
关键词
D O I
10.1016/0096-3003(92)90007-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the solvability and the approximation of the solutions by monotone iteration of the second- and third-order periodic boundary value problems (BVPs) - u" + cu' = f(t,u), u(0) = u(2-pi), u'(0) = u'(2-pi), and u''' + au" + bu' = f(t,u), u(0) = u(2-pi), u'(0) = u'(2-pi), u"(0) = u"(2-pi), in the presence of lower and upper solutions, which may not satisfy the usual ordering condition. To this end some maximum and antimaximum principles are stated and proved for certain linear differential operators naturally associated with the previously stated problems.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 18 条
[1]  
ADJE A, 1987, THESIS U LOUVAIN LA
[2]   NONLINEAR PERTURBATIONS OF DIFFERENTIAL-OPERATORS WITH NONTRIVIAL KERNEL AND APPLICATIONS TO 3RD-ORDER PERIODIC BOUNDARY-VALUE PROBLEMS [J].
AFUWAPE, AU ;
OMARI, P ;
ZANOLIN, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 143 (01) :35-56
[3]  
Agarwal R.P., 1986, BOUND VALUE PROBL
[4]   ELLIPTIC EQUATIONS WITH NON-INVERTIBLE FREDHOLM LINEAR PART AND BOUNDED NONLINEARITIES [J].
AMANN, H ;
AMBROSETTI, A ;
MANCINI, G .
MATHEMATISCHE ZEITSCHRIFT, 1978, 158 (02) :179-194
[5]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[6]  
[Anonymous], 1963, MATH Z, DOI DOI 10.1007/BF01111422
[7]   ANTI-MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC OPERATORS [J].
CLEMENT, P ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 34 (02) :218-229
[8]  
GOSSEZ JP, IN PRESS NONORDERED
[9]  
GREGUS M, 1987, 3RD ORDER LINEAR DIF
[10]  
Krasnoselskii M. A., 1964, POSITIVE SOLUTIONS O