GLOBAL STABILITY OF A PREDATOR-PREY SYSTEM

被引:31
作者
LIOU, LP
CHENG, KS
机构
关键词
D O I
10.1007/BF00280173
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:65 / 71
页数:7
相关论文
共 17 条
[1]   DYNAMICS OF 2 INTERACTING POPULATIONS [J].
ALBRECHT, F ;
GATZKE, H ;
HADDAD, A ;
WAX, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 46 (03) :658-670
[2]   UNIQUENESS OF A LIMIT-CYCLE FOR A PREDATOR-PREY SYSTEM [J].
CHENG, KS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1981, 12 (04) :541-548
[3]  
CHENG KS, 1981, J MATH BIOL, V12, P115, DOI 10.1007/BF00275207
[4]   GRAPHICAL STABILITY, ENRICHMENT, AND PEST-CONTROL BY A NATURAL ENEMY [J].
FREEDMAN, HI .
MATHEMATICAL BIOSCIENCES, 1976, 31 (3-4) :207-225
[5]  
Gause GF, 1936, J ANIM ECOL, V5, P1, DOI 10.2307/1087
[6]   GLOBAL STABILITY IN MANY-SPECIES SYSTEMS [J].
GOH, BS .
AMERICAN NATURALIST, 1977, 111 (977) :135-143
[7]  
HASTINGS A, 1978, J MATH BIOL, V5, P399
[8]   GLOBAL STABILITY OF A PREDATOR-PREY SYSTEM [J].
HSU, SB .
MATHEMATICAL BIOSCIENCES, 1978, 39 (1-2) :1-10
[9]   COMPETING PREDATORS [J].
HSU, SB ;
HUBBELL, SP ;
WALTMAN, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (04) :617-625
[10]  
LIOU LP, UNIQUENESS LIMIT CYC