Behaviour of the SMF method for the numerical integration of satellite orbits

被引:58
作者
Martin, P
Ferrandiz, JM
机构
[1] Departmento de Matemática Aplicada a la Ingeniería, Universidad de Valladolid, Valladolid
[2] Escuela Politécnica Superior, Universidad de Alicante, Alicante
关键词
satellite orbit propagation; numerical integration; oscillator equations; Scheifele G-functions method; linearization;
D O I
10.1007/BF00691913
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The SMF algorithms were recently developed by the authors as a multistep generalization of the Scheifele G-functions one-step method. Like the last, the proposed codes integrate harmonic oscillations without truncation error and the perturbing parameter appears as a factor of that error when integrating perturbed oscillations. Therefore they seemed to be convenient for the accurate integration of orbital problems after the application of linearizing transformations, such as KS or BE In this paper we present several numerical experiments concerning the propagation of Earth satellite orbits, that illustrate the performance of the the SMF method. In general, it provides greater accuracy than the usual standard algorithms for similar computational cost.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 29 条
[1]  
BATTIN RH, 1987, INTRO MATH METHODS A
[2]  
Bettis D. G., 1970, Celestial Mechanics, V2, P282, DOI 10.1007/BF01235122
[3]   NUMERICAL INTEGRATION OF PRODUCTS OF FOURIER AND ORDINARY POLYNOMIALS [J].
BETTIS, DG .
NUMERISCHE MATHEMATIK, 1970, 14 (05) :421-&
[4]  
BURDET CA, 1969, J REINE ANGEW MATH, V238, P71
[5]   NEW RUNGE-KUTTA ALGORITHMS FOR NUMERICAL-SIMULATION IN DYNAMICAL ASTRONOMY [J].
DORMAND, JR ;
PRINCE, PJ .
CELESTIAL MECHANICS, 1978, 18 (03) :223-232
[6]  
FERRANDIZ JM, 1992, ADV ASTRONAUT SCI, V79, P1185
[7]  
FERRANDIZ JM, 1991, NATO ADV SCI I B-PHY, V272, P387
[8]  
FERRANDIZ JM, 1986, SP255 ESA, P361
[9]  
FERRANDIZ JM, 1989, ACTAS 14 JORN HISP L, V3, P1231
[10]  
FERRANDIZ JM, 1988, CELESTIAL MECH, V41, P345