ULTIMATE BOUNDEDNESS RESULTS FOR SOLUTIONS OF CERTAIN THIRD ORDER NONLINEAR MATRIX DIFFERENTIAL EQUATIONS

被引:0
作者
Omeike, M. O. [1 ]
Afiwape, A. U. [2 ]
机构
[1] Univ Agr, Dept Math, Abeokuta, Nigeria
[2] Univ Antioquia, Dept Math, Medellin 1226, Colombia
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2010年 / 33卷
关键词
Matrix differential equation; Lyapunov function; Boundedness;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present in this paper ultimate boundedness results for a third order nonlinear matrix differential equations of the form X + AX + BX + H(X) = P (t, X, X, X), where A, B are constant symmetric n x n matrices, X, H(X) and P (t, X, X, X) are real n x n matrices continuous in their respective arguments. Our results give a matrix analogue of earlier results of Afuwape [1] and Meng [4], and extend other earlier results for the case in which we do not necessarily require that H(X) be differentiable.
引用
收藏
页码:83 / 94
页数:12
相关论文
共 9 条
[1]  
Afuwape A. U., 2004, ACTA U PALACK OLOMUC, V43, P7
[3]  
EZEILO JOC, 1966, ANN MAT PUR APPL, V74, P283
[4]   ULTIMATE BOUNDEDNESS RESULTS FOR A CERTAIN SYSTEM OF 3RD-ORDER NONLINEAR DIFFERENTIAL-EQUATIONS [J].
MENG, FW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 177 (02) :496-509
[5]  
Omeike M. O., 2007, ACTA U PALACKI OLOMU, V46, P65
[6]  
Omeike M. O., 2005, THESIS
[7]  
Reissig R., 1974, NONLINEAR DIFFERENTI
[8]  
Tejumola H. O., 1976, CL SCI FIS MAT NATUR, V60, P100
[9]  
Yoshizawa T., STABILITY THEORY LIA