INVARIANT SUBSPACES AND NEW EXPLICIT SOLUTIONS TO EVOLUTION-EQUATIONS WITH QUADRATIC NONLINEARITIES

被引:131
作者
GALAKTIONOV, VA [1 ]
机构
[1] RUSSIAN ACAD SCI,MV KELDYSH APPL MATH INST,MOSCOW 125047,RUSSIA
关键词
D O I
10.1017/S0308210500028018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new explicit solutions to some classes of quasilinear evolution equations arising in different applications, including equations of the Boussinesq type: u(tt) - uu(xx) + 3/4(u(x))(2) + u(2) + ($) over bar au(xx) + ($) over bar bu(xxxx) = 0, and quasilinear heat equations: v(t) = (v(-4/3)v(x))(x) + ($) over bar av(-1/3) + ($) over bar bv(7/3) + ($) over bar cv, v(t) = del . (v(sigma)($) over bar Vv) + ($) over bar av(1-sigma) + ($) over bar bv. The method is based on construction of finite-dimensional linear functional subspaces which are invariant with respect to spatial operators having quadratic nonlinearities. The corresponding nonlinear evolution equations on invariant subspaces are shown to be equivalent to finite-dimensional dynamical systems. Examples of two-, three- and five-dimensional invariant subspaces are given. Some generalisations to N-dimensional quadratic operators are also considered.
引用
收藏
页码:225 / 246
页数:22
相关论文
共 14 条
[1]   POSITIVITY VERSUS LOCALIZATION IN DEGENERATE DIFFUSION-EQUATIONS [J].
BERTSCH, M ;
KERSNER, R ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (09) :987-1008
[2]  
BUDD C, UNPUB BLOW UP PARABO
[3]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[4]  
DORODNITSYN VA, 1982, ZH VYCH MAT MAT FIZ, V22, P1393
[5]  
Galaktionov V. A., 1990, DIFFER INTEGRAL EQU, V3, P863
[6]  
GALAKTIONOV VA, 1988, 115 KELD I APPL MATH
[7]  
GALAKTIONOV VA, 1987, SOVREM PROBL MAT NOV, V28, P95
[8]   NONLINEAR INSTABILITY BURST IN PLANE PARALLEL FLOW [J].
HOCKING, LM ;
STEWARTSON, K ;
STUART, JT .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB22) :705-+
[9]  
KERSHNER R, 1978, ACTA MATH ACAD SCI H, V32, P301
[10]  
KING JR, EXACT MULTIDIMENSION