UNIQUENESS OF POSITIVE RADIAL SOLUTIONS OF DELTA-U+F(U)=0 IN R(N) .2.

被引:140
作者
MCLEOD, K
机构
关键词
D O I
10.2307/2154282
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a uniqueness result for the positive solution of DELTAu + f(u) = 0 in R(n) which goes to 0 at infinity. The result applies to a wide class of nonlinear functions f, including the important model case f(u) = - u + u(p), 1 < p < (n + 2)/(n - 2). The result is proved by reducing to an initial-boundary problem for the ODE u'' + (n - 1)/r + f(u) = 0 and using a shooting method.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 11 条
[1]   AN ODE APPROACH TO THE EXISTENCE OF POSITIVE SOLUTIONS FOR SEMI-LINEAR PROBLEMS IN RN [J].
BERESTYCKI, H ;
LIONS, PL ;
PELETIER, LA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (01) :141-157
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
COFFMAN CV, 1972, ARCH RATION MECH AN, V46, P81
[5]  
KWONG MK, 1989, ARCH RATION MECH AN, V105, P243
[6]  
KWONG MK, COMMUNICATION
[7]   RADIAL SOLUTIONS OF DELTA-U+F(U)=0 WITH PRESCRIBED NUMBERS OF ZEROS [J].
MCLEOD, K ;
TROY, WC ;
WEISSLER, FB .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (02) :368-378
[8]   UNIQUENESS OF POSITIVE RADIAL SOLUTIONS OF DELTA-U+F(U)=0 IN RN [J].
MCLEOD, K ;
SERRIN, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 99 (02) :115-145
[9]  
PELETIER LA, 1983, ARCH RATION MECH AN, V81, P181
[10]  
Pohozaev S. I, 1965, DOKL AKAD NAUK SSSR, V165, P1408