Differential equations and Sobolev orthogonality

被引:5
作者
Jung, IH
Kwon, KH
Lee, DW
Littlejohn, LL
机构
[1] KOREA ADV INST SCI & TECHNOL,DEPT MATH,YUSONG KU,TAEJON 305701,SOUTH KOREA
[2] UTAH STATE UNIV,DEPT MATH & STAT,LOGAN,UT 84322
关键词
spectral differential equations; Sobolev orthogonal polynomials; symmetrizability of differential operator;
D O I
10.1016/0377-0427(95)00111-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider (Sobolev) orthogonal polynomials which are orthogonal relative to a Sobolev bilinear form integral(R) p(x)q(x)d mu(x) + integral(R) p'(x)q'd nu(x), where d mu(x) and d nu(x) are signed Borel measures with finite moments. We give necessary and sufficient conditions under which such orthogonal polynomials satisfy a linear spectral differential equation with polynomial coefficients. We then find a sufficient condition under which such a differential equation is symmetrizable. These results can be applied to Sobolev-Laguerre polynomials found by Koekoek and Meijer.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 10 条
[1]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[2]  
JUNG IH, IN PRESS T AM MATH S
[3]   A GENERALIZATION OF LAGUERRE-POLYNOMIALS [J].
KOEKOEK, R ;
MEIJER, HG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) :768-782
[4]   THE SEARCH FOR DIFFERENTIAL-EQUATIONS FOR CERTAIN SETS OF ORTHOGONAL POLYNOMIALS [J].
KOEKOEK, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 49 (1-3) :111-119
[5]  
Krall H.L., 1938, DUKE MATH J, V4, P705
[6]   ORTHOGONALIZING WEIGHTS OF TCHEBYCHEV SETS OF POLYNOMIALS [J].
KWON, KH ;
KIM, SS ;
HAN, SS .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 :361-367
[7]   CHARACTERIZATIONS OF ORTHOGONAL POLYNOMIALS SATISFYING DIFFERENTIAL-EQUATIONS [J].
KWON, KH ;
LITTLEJOHN, LL ;
YOO, BH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (03) :976-990
[8]  
KWON KH, UNPUB DIFFERENTIAL E
[9]  
KWON KH, UNPUB CLASSIFICATION
[10]  
LITTLEJOHN LL, 1990, P LOND MATH SOC, V60, P344