REGULARITY AND GROBNER BASES OF THE REES ALGEBRA OF EDGE IDEALS OF BIPARTITE GRAPHS

被引:7
作者
Cid-Ruiz, Yairon [1 ]
机构
[1] Univ Barcelona, Dept Matemat & Informat, Fac Matemat & Informat, Gran Via Corts Catalanes 585, E-08007 Barcelona, Spain
来源
MATEMATICHE | 2018年 / 73卷 / 02期
关键词
bipartite graphs; Rees algebra; Grobner bases; regularity; canonical module; edge ideals; toric ideals;
D O I
10.4418/2018.73.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a bipartite graph and I = I(G) be its edge ideal. The aim of this note is to investigate different aspects of the Rees algebra R(I) of I. We compute its regularity and the universal Grobner basis of its defining equations; interestingly, both of them are described in terms of the combinatorics of G. We apply these ideas to study the regularity of the powers of I. For any s >= match(G) + vertical bar E (G)vertical bar + 1 we prove that reg(Is+1) = reg(I-s) + 2.
引用
收藏
页码:279 / 296
页数:18
相关论文
共 28 条
[1]  
Alilooee A., 2017, ARXIV E PRINTS
[2]   POWERS OF EDGE IDEALS OF REGULARITY THREE BIPARTITE GRAPHS [J].
Alilooee, Ali ;
Banerjee, Arindam .
JOURNAL OF COMMUTATIVE ALGEBRA, 2017, 9 (04) :441-454
[3]   The regularity of powers of edge ideals [J].
Banerjee, Arindam .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 41 (02) :303-321
[4]  
Banerjee Arindam, 2017, ARXIV171200887
[5]   Regularity of powers of forests and cycles [J].
Beyarslan, Selvi ;
Ha, Huy Tai ;
Tran Nam Trung .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (04) :1077-1095
[6]  
Bruns W., 1998, CAMBRIDGE STUDIES AD, V39
[7]  
Bruns W, 2009, SPRINGER MONOGR MATH, P3, DOI 10.1007/b105283_1
[8]   Asymptotic behaviour of the Castelnuovo-Mumford regularity [J].
Cutkosky, SD ;
Herzog, J ;
Trung, NV .
COMPOSITIO MATHEMATICA, 1999, 118 (03) :243-261
[9]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[10]   REES ALGEBRAS OF SQUARE-FREE MONOMIAL IDEALS [J].
Fouli, Louiza ;
Lin, Kuei-Nuan .
JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (01) :25-54