EFFECTIVE ANALYSIS OF INTEGRAL POINTS ON ALGEBRAIC-CURVES

被引:23
作者
BILU, Y [1 ]
机构
[1] UNIV BORDEAUX 2,F-33076 BORDEAUX,FRANCE
关键词
D O I
10.1007/BF02783215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an algebraic number field, S superset of or equal to S infinity a finite set of valuations and C a non-singular algebraic curve over K. Let x is an element of K(C) be non-constant. A point P is an element of C(K) is S-integral if it is not a pole of x and \x(P)\ upsilon > 1 implies upsilon is an element of S. It is proved that all S-integral points can be effectively determined if the pair (C, x) satisfies certain conditions. In particular, this is the case if (i) x: C --> P-1 is a Galois covering and g(C) greater than or equal to 1; (ii) the integral closure of ($) over bar Q[x] in ($) over bar Q(C) has at least two units multiplicatively independent mod ($) over bar Q*. This generalizes famous results of A. Baker and other authors on the effective solution of Diophantine equations.
引用
收藏
页码:235 / 252
页数:18
相关论文
共 40 条
[1]   LINEAR FORMS IN LOGARITHMS OF ALGEBRAIC NUMBERS (3) [J].
BAKER, A .
MATHEMATIKA, 1967, 14 (28P2) :220-&
[2]   LINEAR FORMS IN LOGARITHMS OF ALGEBRAIC NUMBERS (2) [J].
BAKER, A .
MATHEMATIKA, 1967, 14 (27P1) :102-&
[3]   LINEAR FORMS IN LOGARITHMS OF ALGEBRAIC NUMBERS [J].
BAKER, A .
MATHEMATIKA, 1966, 13 (26P2) :204-&
[4]   BOUNDS FOR SOLUTIONS OF HYPERELLIPTIC EQUATION [J].
BAKER, A .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 :439-&
[5]   LINEAR FORMS IN LOGARITHMS OF ALGEBRAIC NUMBERS .4. [J].
BAKER, A .
MATHEMATIKA, 1968, 15 (30P2) :204-&
[6]   DIOPHANTINE EQUATION Y2=AX3+BX2+CX+D [J].
BAKER, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (169P) :1-&
[7]  
BAKER A, 1993, J REINE ANGEW MATH, V442, P19
[8]  
BAKER A, 1970, P CAMB PHILOS SOC, V67, P592
[9]  
BAKER A, 1967, PHIL T R SOC LONDO A, V263, P173
[10]  
BEUKERS F, 1993, 771 U UTRECHT