WOLFF-TYPE EMBEDDING ALGORITHMS FOR GENERAL NONLINEAR SIGMA-MODELS

被引:57
作者
CARACCIOLO, S
EDWARDS, RG
PELISSETTO, A
SOKAL, AD
机构
[1] INFN, I-56100 PISA, ITALY
[2] FLORIDA STATE UNIV, SUPERCOMP COMPUTAT RES INST, TALLAHASSEE, FL 32306 USA
[3] UNIV PISA, DIPARTIMENTO FIS, I-56100 PISA, ITALY
[4] NYU, DEPT PHYS, NEW YORK, NY 10003 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(93)90044-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a class of Monte Carlo algorithms for the nonlinear sigma-model, based on a Wolff-type embedding of Ising spins into the target manifold M. We argue heuristically that, at least for an asymptotically free model, such an algorithm can have a dynamic critical exponent z << 2 only if the embedding is based on an (involutive) isometry of M whose fixed-point manifold has codimension 1. Such an isometry exists only if the manifold is a discrete quotient of a product of spheres. Numerical simulations of the idealized codimension-2 algorithm for the two-dimensional O(4)-symmetric sigma-model yield z(int,M2) = 1.5 +/- 0.5 (subjective 68% confidence interval), in agreement with our heuristic argument.
引用
收藏
页码:475 / 541
页数:67
相关论文
共 111 条
[1]  
Abraham R., 1967, TRANSVERSAL MAPPINGS
[2]  
ANDERSON TW, 1971, STATISTICAL ANAL TIM
[3]   COMPARISON OF CLUSTER ALGORITHMS FOR 2-DIMENSIONAL POTTS MODELS [J].
BAILLIE, CF ;
CODDINGTON, PD .
PHYSICAL REVIEW B, 1991, 43 (13) :10617-10621
[4]   NOTE ON WIGNERS THEOREM ON SYMMETRY OPERATIONS [J].
BARGMANN, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :862-&
[5]   LANGEVIN SIMULATIONS OF LATTICE FIELD-THEORIES [J].
BATROUNI, GG ;
KATZ, GR ;
KRONFELD, AS ;
LEPAGE, GP ;
SVETITSKY, B ;
WILSON, KG .
PHYSICAL REVIEW D, 1985, 32 (10) :2736-2747
[6]   CRITICAL ACCELERATION OF LATTICE GAUGE SIMULATIONS [J].
BENAV, R ;
KANDEL, D ;
KATZNELSON, E ;
LAUWERS, PG ;
SOLOMON, S .
JOURNAL OF STATISTICAL PHYSICS, 1990, 58 (1-2) :125-139
[7]  
Borel A., 1955, COMMENT MATH HELV, V29, P27
[8]   LOWER CRITICAL DIMENSION OF ISING SPIN-GLASSES - A NUMERICAL STUDY [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (18) :L463-L468
[9]   GENERALIZED NON-LINEAR SIGMA-MODELS WITH GAUGE-INVARIANCE [J].
BREZIN, E ;
HIKAMI, S ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1980, 165 (03) :528-544
[10]   RANDOM SURFACE DYNAMICS FOR Z2 GAUGE-THEORY [J].
BROWER, RC ;
HUANG, SZ .
PHYSICAL REVIEW D, 1990, 41 (02) :708-711