EINSTEIN-LIKE APPROXIMATION FOR HOMOGENIZATION WITH SMALL CONCENTRATION .1. ELLIPTIC PROBLEMS

被引:23
作者
SANCHEZPALENCIA, E
机构
[1] Univ Pierre et Marie Curie, Lab de, Mecanique Theorique, Paris, Fr, Univ Pierre et Marie Curie, Lab de Mecanique Theorique, Paris, Fr
关键词
MATHEMATICAL TECHNIQUES - Differential Equations - SUSPENSIONS;
D O I
10.1016/0362-546X(85)90033-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Einstein in 1906 gave a formula for the homogenized viscosity of a dilute suspension of rigid solid spherical particles in a viscous fluid. As the general case of nonsmall concentration involves new phenomena such as variable microstructure, anisotropy and modification of the inertial terms, it is worthwhile obtaining the Einstein's approximation as the asymptotic behavior for small concentration of the homogenization formulas. This is the goal of this paper. In this paper the author only considers the model elliptic equation, and proofs are given in detail.
引用
收藏
页码:1243 / 1254
页数:12
相关论文
共 9 条
[1]  
Bensoussan A, 1978, ASYMPTOTIC ANAL PERI
[2]   HOMOGENIZATION IN OPEN SETS WITH HOLES [J].
CIORANESCU, D ;
PAULIN, JSJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 71 (02) :590-607
[3]  
FRANK F, 1961, DIFFERENTIAL INTEGRA
[4]  
Ladyzhenskaya O., 1963, MATH THEORY VISCOUS
[5]  
LANDAU L, 1971, MECANIQUE FLUIDES
[6]   SUSPENSION OF SOLID PARTICLES IN A NEWTONIAN FLUID [J].
LEVY, T ;
SANCHEZPALENCIA, E .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1983, 13 (01) :63-78
[7]   EINSTEIN-LIKE APPROXIMATION FOR HOMOGENIZATION WITH SMALL CONCENTRATION .2. NAVIER-STOKES EQUATION [J].
LEVY, T ;
SANCHEZPALENCIA, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1985, 9 (11) :1255-1268
[8]  
SANCHEZPALENCIA E, 1974, J MATH PURE APPL, V53, P251
[9]  
SANCHEZPALENCIA E, 1980, NON HOMOGENEOUS MEDI