A DIFFERENTIAL DERIVATION OF THE RECURRENCE RELATIONS FOR THE CLASSICAL ORTHOGONAL POLYNOMIALS

被引:0
作者
SLAVYANOV, SY [1 ]
机构
[1] MAX PLANCK INST MET RES,W-7000 STUTTGART 80,GERMANY
关键词
ORTHOGONAL POLYNOMIALS; OPERATOR ALGEBRA; RECURRENCE RELATIONS;
D O I
10.1016/0377-0427(93)90157-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recurrence relations for classical orthogonal polynomials are derived in a new way by using two fruitful tools. One tool is a specially chosen commutator algebra for certain simple operators. The other tool is a confluence process. No other formula except a differential equation for polynomials is used. Jacobi polynomials and Laguerre polynomials are taken as examples.
引用
收藏
页码:251 / 254
页数:4
相关论文
共 4 条
[1]  
Miller W., 1968, MATH SCI ENG, V43
[2]  
OLVER FWJ, 1974, ASYMPTOTICS SPECIAL
[3]  
VILENKIN NY, 1965, SPECIAL FUNCTIONS TH
[4]  
1953, HIGHER TRANSCENDENTA