ON THE CONSTRUCTION OF TRIGONOMETRIC SOLUTIONS OF THE YANG-BAXTER EQUATION

被引:49
作者
DELIUS, GW [1 ]
GOULD, MD [1 ]
ZHANG, YZ [1 ]
机构
[1] UNIV QUEENSLAND,DEPT MATH,BRISBANE,QLD 4072,AUSTRALIA
关键词
D O I
10.1016/0550-3213(94)90607-6
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We describe the construction of trigonometric R-matrices corresponding to the (multiplicity-free) tenser product of two irreducible representations of a quantum algebra U-q(G). Our method is a generalization of the tenser product graph method to the case of two different representations. It yields the decomposition of the R-matrix into projection operators. Many new examples of trigonometric R-matrices (solutions to the spectral parameter dependent Yang-Baxter equation) are constructed using this approach.
引用
收藏
页码:377 / 403
页数:27
相关论文
共 47 条
[1]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[2]   FACTORIZED U(N) SYMMETRIC S-MATRICES IN 2 DIMENSIONS [J].
BERG, B ;
KAROWSKI, M ;
WEISZ, P ;
KURAK, V .
NUCLEAR PHYSICS B, 1978, 134 (01) :125-132
[3]   QUANTUM GROUP SYMMETRIES AND NONLOCAL CURRENTS IN 2D QFT [J].
BERNARD, D ;
LECLAIR, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (01) :99-138
[4]  
BRACKEN AJ, IN PRESS INT J MOD B
[5]  
BRACKEN AJ, IN PRESS J PHYS A
[6]  
CHARI V, 1991, J REINE ANGEW MATH, V417, P87
[7]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[8]  
Chari V., 1990, ENSEIGNEMENT MATH, V36, P267
[9]  
Cherednik I., 1980, TEOR MAT FIZ, V43, P117
[10]  
DELIUS GW, 1994, BITP9411