What is beyond coherent pairs of orthogonal polynomials?

被引:14
作者
Marcellan, F
Petronilho, JC
Perez, TE
Pinar, MA
机构
[1] UNIV CARLOS 3,LEGANES,MADRID,SPAIN
[2] UNIV COIMBRA,COIMBRA,PORTUGAL
[3] UNIV GRANADA,FAC CIENCIAS,DEPT MATEMAT APLICADA,E-18071 GRANADA,SPAIN
关键词
orthogonal polynomials; regular linear functionals; semiclassical linear functionals; coherent pairs; symmetrically coherent pairs;
D O I
10.1016/0377-0427(95)00121-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Usually, coherent pairs of orthogonal polynomials hate been considered in the wider context of Sobolev orthogonality. In this paper, we focus our attention on the problem of coherence between two orthogonal polynomial sequences in terms of the corresponding linear functionals. We deduce some conditions about the linear functionals in order that the corresponding orthogonal polynomial sequences constitute a coherent pair.
引用
收藏
页码:267 / 277
页数:11
相关论文
共 17 条
[1]  
ALTHAMMER P, 1962, J REINE ANGEW MATH, V211, P192
[2]  
BRENNER J, 1972, CONSTRUCTIVE THEORY, P77
[3]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[4]  
Hahn W., 1935, MATH Z, V39, P634
[5]  
HENDRIKSEN E, 1985, LECT NOTES MATH, V1171, P354
[6]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[7]   POLYNOMIAL LEAST SQUARE APPROXIMATIONS [J].
LEWIS, DC .
AMERICAN JOURNAL OF MATHEMATICS, 1947, 69 (02) :273-278
[8]  
MARCELLAN F, 1994, UNPUB LAGUERRE SOBOL
[9]  
MARCELLAN F, IN PRESS INDAG MATH
[10]  
MARCELLAN F, 1994, NONLINEAR NUMERICAL, V2, P71